

General Certificate of Secondary Education 2011–2012

Science: Double Award (Modular)

Forces and Energy End of Module Test Higher Tier [GDC02] WEDNESDAY 29 FEBRUARY 2012 9.30 am–10.15 am

MARK SCHEME

1	(a) (i) conduction	[1]	AVAILABLE MARKS
	(ii) electron	[1]	
	(b) (i) conduction	[1]	
	(ii) atom/molecule	[1]	4
2	E = useful energy output/energy input [1] = 80/200 [1]		
	= 0.4 (40%) [1]	[3]	3
3	(i) horizontal line from (50, 200) to (100, 200) [1] line from (100, 200) to (200,0) [1]	[2]	
	(ii) 400 (m) [1]	[1]	3
4	(a) 16 (mm)	[1]	
	(b) line is straight	[1]	
	(c) (i) Extension	[1]	
	(ii) Total length = 36mm (or 20 + 16) [1] Load = 7 (N) [1]	[2]	5
5	(a) momentum = mass × vel [1] = 2000 × 7 [1] 14000 (/(am (a) [1]	[0]	
	= 14000 (kgm/s) [1]	[3]	
	(b) friction [1]	[1]	
	(c) towards the centre (of the curve) [1]	[1]	5
6	(a) 500 (N)	[1]	
	(b) Power = work done/time [1]	[1]	
	$= (500 \times 2)/1.5$ [2] ecf from (a)	[2]	6
		[2]	0

7	(a)	a) Kinetic to electrical Both for [1][1]			AVAILABLE MARKS
	(b)	(i)	Unreliable, requires a lot of area, visual pollution, remote from population Any 1 for [1]	[1]	
		(ii)	Non polluting, conserves fossil fuels, Any 1 for [1]	[1]	3
8	Moi rise	re [1 s [1]] warm air rises [1] or more [1] convection at A [1] or warm air and cold air falls [1] [dependent mark]	ing]	2
9	Displacement = Area Under [1] or Disp. = Av. Vel × time = $(\frac{1}{2} \times 10 \times 10) + (10 \times 20)$ [2] = 250 [1] (m) [4]				4
10	(a)	For or l or b	wards force > backwards force Jnbalanced forces because there is a resultant force	[1]	
	(b)	(R) 300 a =	$F = m \times a [1] 00 = 750 \times a [1] 4 [1] (m/s2)$	[3]	4
11	(a)	r or r	$\begin{array}{l} \text{noment} = F \times d \\ \text{noment} = 200 \times 1.20 \end{array} [1] \\ = 240 \text{ (Nm) [1]} \end{array}$	[2]	
	(b)	ACI Loa Loa	M = CM [1] ad × 0.40 = 240 [1] allow ecf from (a) ad = 600 (N) [1]	[3]	5
12	(a)	KE KE KE	$= \frac{1}{2}mv^{2} [1]$ = $\frac{1}{2} \times 1.5 \times (40)^{2} [1]$ = 1200 (J) [1]	[3]	
	(b)	PE 1.5 h =	= KE [1] \times g \times h = 1200 [1] allow ecf from (a) 80 [1] (m)	[3]	6
			Тс	otal	50