

Centre Number			
71			
Candidate Number			

General Certificate of Secondary Education 2011

Science: Double Award (Non-Modular)

Paper 1 Higher Tier

[G8404]

THURSDAY 19 MAY, AFTERNOON

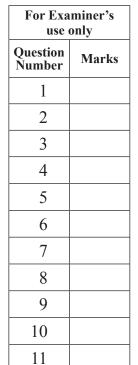
TIME

1 hour 45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all twelve** questions.

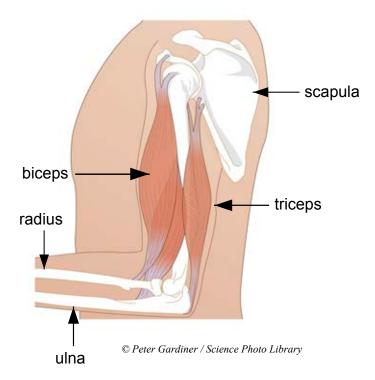

INFORMATION FOR CANDIDATES

The total mark for this paper is 120.

Quality of written communication will be assessed in question **6(b)**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Details of calculations should be shown.

Units must be stated in numerical answers where appropriate.



Total	
10141	
Marks	
Maiks	

1 The diagram shows the bones and the biceps and triceps muscles of the arm.

Use the diagram and your knowledge to answer the following questions.

(a) Name the two bones that the biceps muscle is attached to.

_____ and _____ [2]

(b) Which muscle must be contracted in order to raise the lower arm?

_____[1]

(c) What type of cell carries the electrical impulse to the muscle to make it contract?

_____[1]

2

2 A student carried out food tests on three solutions A, B and C.

Examiner Only

Marks Remark

[1]

The results are shown in the table.

Solution	Iodine test	Benedict's test	Biuret test	DCPIP
A	1	×	×	X
В	×	Х	√	Х
С	Х	1	Х	1

A tick \checkmark indicates a positive result and an X indicates a negative result for the test.

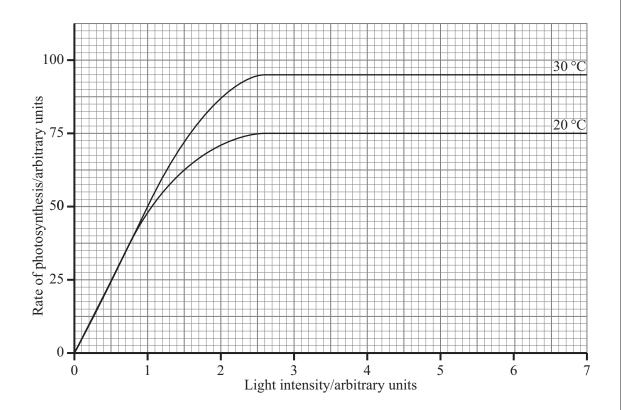
(a) Using the information in the table state what types of food were present in the different solutions.

Solution A _____

Solution B _____

Solution C _____ and ____ [3]

(b) Which of these food tests requires heating?



(c) What colour change is seen with a positive result for the Biuret test?

From ______ to _____ [1]

3 The graph shows the effect of light intensity on the rate of photosynthesis at two different temperatures. The carbon dioxide concentration is 0.03% at both temperatures.

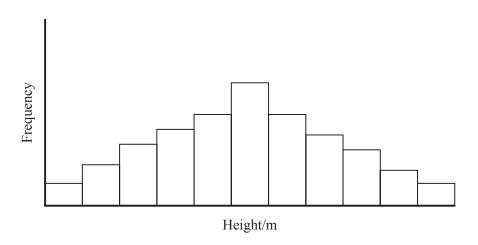
(a) Use the information in the graph and your knowledge to suggest the light intensity and temperature that a market gardener should have in his greenhouse to maximise his profit. Explain your answer.

Light intensity _____ arbitrary units

Temperature _____°C

Explanation _____

[3]


(b) Explain why temperatures above 50 °C would be a problem when growing plants in a greenhouse. Suggest how a grower might regulate temperatures in a greenhouse.

[2]

_____ L

4 The graph shows how height in a population of animals varies. Height is an example of continuous variation.

(a)	State the two	causes	of height	variation	in this	population.
٠,	,			- 0			

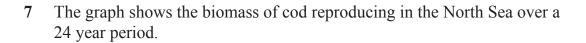
and	[2]
anu	_

(b) Suggest the effect on the average height of future populations if the smallest animals couldn't compete for food.

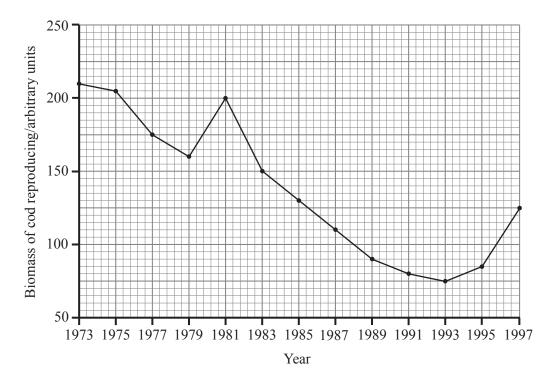
[1]	l

Organisms of the same species show variation ar selection.	nd this allows natural	Examiner Only Marks Remark
(a) Suggest one adaptation a plant might posses to survive better in low light intensity than o species.		
	[1]	
(b) How would this adaptation be passed on?		
	[1]	
(c) Explain why an adaptation that does not give not be passed on.	e a plant an advantage may	
	[2]	

6 The table shows the mineral level (nitrates and phosphates) and depth of light penetration in an unpolluted lake, a polluted lake and Lough Neagh.


Examiner Only			
Marks	Remark		

Lake	Mineral level/arbitrary units per litre	Depth of light penetration/m
Unpolluted	10–34	6
Polluted (eutrophic)	35–100	3
Lough Neagh	165	1.1


© Crown Copyright

Use the data in the table and your knowledge to answer the following questions.

(a)	Compare the mineral level in Lough Neagh with the other lakes.		
(b)	The minerals are used by the water plants for growth. Why is light only able to penetrate 1.1 m in Lough Neagh? Explain how this can result in death of fish in the lough.		
	The quality of written communication will be assessed in this question.		
	[5]		
	Quality of written communication [2]		

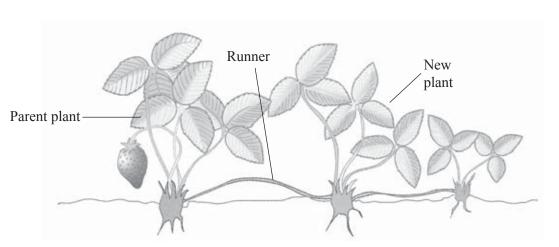
Use the graph and your knowledge to answer the following questions.

(a) How many times greater was the biomass of cod reproducing in 1983 compared to 1993?

times [2]

The biomass of cod reproducing in the North Sea started to rise in 1993 after the introduction of new regulations by the European Commission. One regulation made the fishing industry use increased mesh size in fishing nets.

(b) Explain how this regulation helped to increase the biomass of cod reproducing.

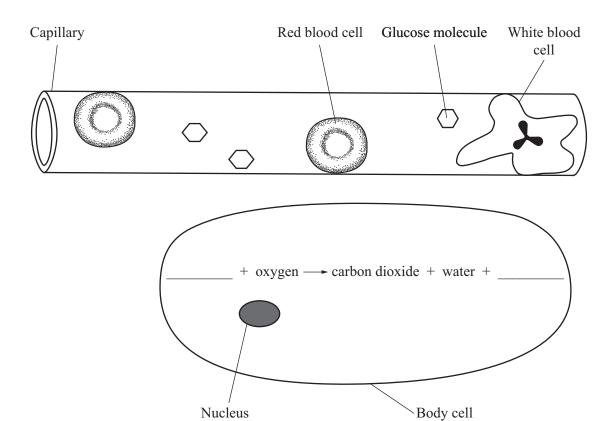

[2]

(c) Suggest **two** other regulations that could have been imposed by the European Commission to help increase cod stocks.

1. _____

2. ______ [2]

8 The diagram shows a strawberry plant with runners.

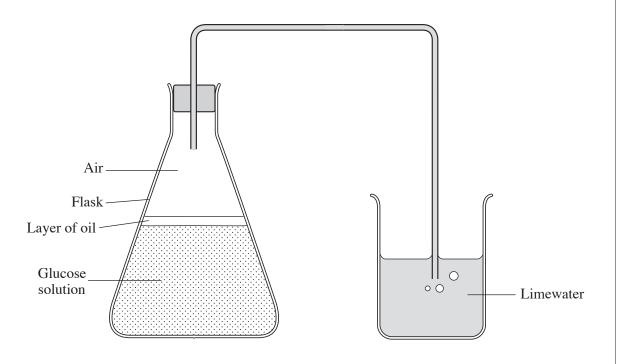

© GCSE Biology for CCEA by R McIlwaine & J Napier, published by Hodder Education, 2003. ISBN 9780340858257. Reproduced by permission of Hodder Education

Examiner Only

(a)	Name this type of reproduction.
(b)	Give one disadvantage of this type of reproduction.
	[1]
(c)	If a grower had a strawberry plant that produced tasty fruit, what two other methods could she use to increase her stock of this plant?
	[2]

6908 9 [Turn over

9 (a) The diagram shows a blood capillary and a body cell.


- (i) Complete the word equation for respiration in the body cell. [2]
- (ii) How is oxygen carried in the blood capillary?

 [1]
- (iii) What happens to the carbon dioxide immediately after it has been produced in the body cell?

_____[1]

(b) An investigation was carried out to show anaerobic respiration of a microorganism. The microorganism was added to the glucose solution, which had been boiled, then cooled. The apparatus used is shown in the diagram.

Examiner Only		
Marks	Remark	
	I	

(i)	Name the	microorganism	normally used	in this	investigation
-----	----------	---------------	---------------	---------	---------------

[1]

(ii) Why was the glucose solution

boiled _____

then cooled? _____ [2]

(iii) What would you expect to happen to the limewater?

_____[1]

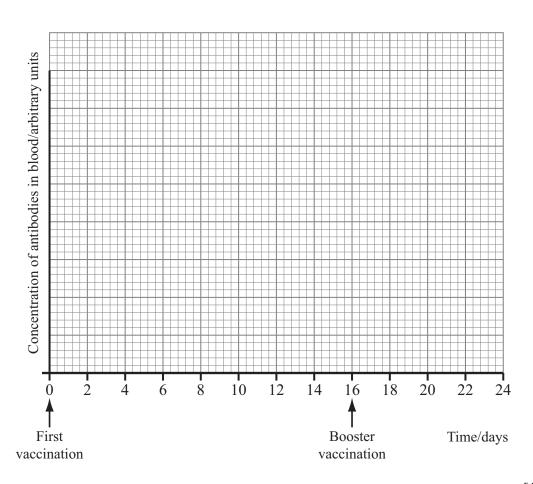
(c) The diagram s	hows the lungs, h	eart and body	organs of a mammal. Examiner O	
	LUN	NGS		
	ATRIUM	ATRIUM		
	VENTRICLE	VENTRICLE		
	Right HEA	ART Left		
	BODY C			

(i)	Complete the diagram by drawing four blood vessels to show the
	circulation of blood from:

er Only
Remark

- the body organs to the heart label as A
- the heart to the lungs and back label both as B

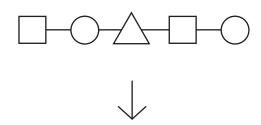
			-		
•	heart to	the body	organs –	label as	C.


[4]

- (ii) Name the largest artery in the body. [1]
- (iii) Explain why the left ventricle has the thickest muscular wall in the heart.

_____ [1]

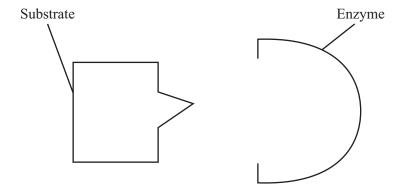
(d) Some white blood cells in the body provide immunity by producing antibodies. Most vaccinations introduce a modified disease-causing organism into the body.


Draw a line to show what happens to the concentration of antibodies following a vaccination and a subsequent booster vaccination.

[5]

10 (a) The diagram shows how amino acids link together to form a protein molecule.

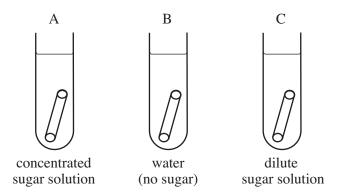
Examiner Only		
Remark		


- (i) Complete the diagram above to show what happens to this protein molecule during digestion in the stomach and small intestine. [2]
- (ii) The amino acids will then be absorbed into the blood. Name the process involved.

F.1
 . [1

(iii) Give **two** ways the small intestine is adapted for the process of absorption.

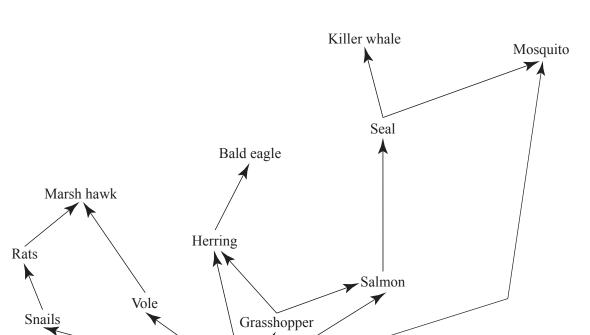
1			
1.			


(b) The diagram shows the shape of a substrate molecule and part of an enzyme molecule.

(i) Complete the diagram of the enzyme molecule that would break down this substrate molecule. [1]

Explain why this enzyme molecule would not break down different substrate molecule.	Wn a Exam	iner O
	[1]	
Why does increasing temperature from 20 °C to 30 °C in rate of an enzyme-catalysed reaction?	ncrease the	
	[1]	

(c) An investigation into osmosis was carried out with potato cylinders. Three test tubes A, B and C were set up, each with a potato cylinder of 50 mm length and a different concentration of sugar solution. The potato cylinders were left for several hours, removed and their final length recorded. The results are given in the table.



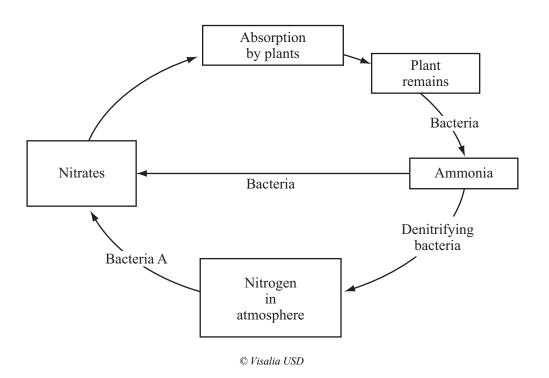
Test tube	Solution	Length of potato cylinder at the start/mm	Length of potato cylinder at the end/mm
A	Concentrated sugar solution	50	48
В	Water (no sugar)	50	53
С	Dilute sugar solution	50	50

(i)	Why was it not necessary to work out the percentage change in length in this experiment?	
		[1]
(ii)	Give one factor that should have been kept constant in this experiment.	[1]
(iii)	Explain the results for the potato cylinder in test tube A.	[1]
		— [2]

	(iv)	Draw a diagram of one potato cell from the potato cylinder in test tube A as it would appear at the end of the investigation.	Examine Marks	er Only Remark
		Label the cell membrane, cell wall and vacuole in your diagram.		
		[4]		
	(v)	Suggest what would happen if red blood cells are placed in water. Explain your answer.		
(d)	(i)	Name the process in plant root hair cells that involves the transport of minerals from the soil.		
	(ii)	Explain why energy is needed for this process.		
	(iii)	Waterlogged soil contains little oxygen. Explain how the uptake of minerals is affected if the plant is grown in waterlogged soil.		
		[2]		

11 (a) The diagram shows a food web.

Marsh vegetation


http://www.acklamgrange.org.uk/science/topics/food_web3.jpg

Examiner Only

(i) At what two trophic levels is the herring feeding? _____[1] and (ii) Draw the food chain from the food web where the bald eagle is acting as a tertiary consumer. [2] 18

) Explain v	why the m	arsh haw	k would	d gain n	nore ene	rgy fr	om eat	ing	
voles that	-					23		C	
								[2]	
oyramid of own below.	numbers	for one o	of the fo	od chaii	ns in the	food	web is		
JWII DEIOW.									
					_				
		Grassh	opper						
					•	7			
		Marsh Ve	egetation						
		Marsh Ve	egetation						
Complete		s on the	pyramid	l with th	ie correc	et nam	e of th		
Complete		s on the	pyramid	l with th	ne correc	et nam	e of th	ie [2]	
organism	s in the fo	ls on the pood chain	pyramid 						
	s in the fo	ls on the pood chain	pyramid 						
organism On the gr	s in the for id draw a above.	ls on the pood chain	pyramid of bion	nass fro	m the py				
organism On the gr numbers	s in the for id draw a above.	ls on the pood chain	pyramid of bion	nass fro	m the py				
organism On the gr numbers	s in the for id draw a above.	ls on the pood chain	pyramid of bion	nass fro	m the py				
organism On the gr numbers	s in the for id draw a above.	ls on the pood chain	pyramid of bion	nass fro	m the py				
organism On the gr numbers	s in the for id draw a above.	ls on the pood chain	pyramid of bion	nass fro	m the py				
organism On the gr numbers	s in the for id draw a above.	ls on the pood chain	pyramid of bion	nass fro	m the py				

(b) The diagram shows part of the nitrogen cycle.

Examiner Only

Use the diagram and your knowledge to answer the following questions.

(i) Name bacteria A.

[1]

(ii) Explain why harvesting a crop causes a decrease in the nitrate content of the soil.

_____[1]

(iii) Suggest and explain **two** methods, other than applying fertiliser, by which a farmer could increase the nitrate content of the soil.

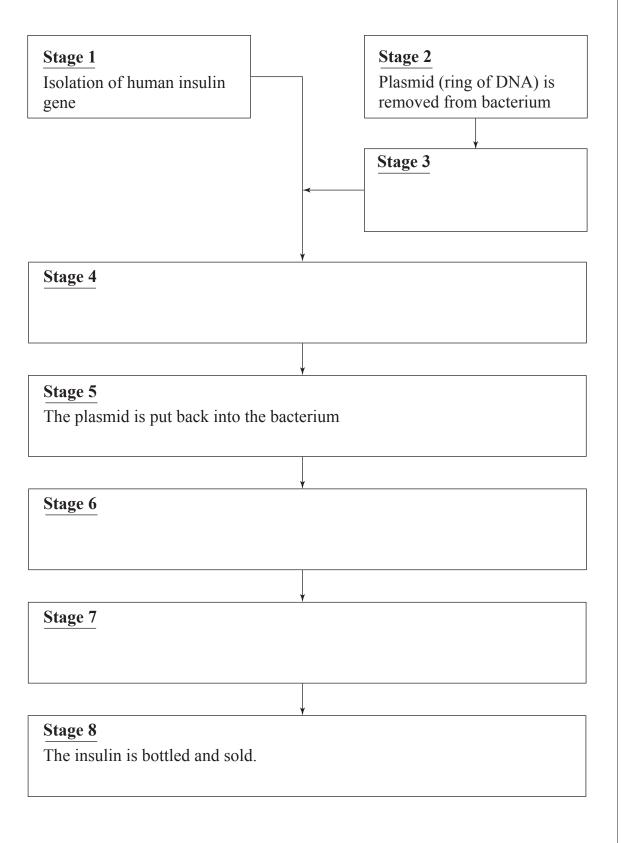
Method 1

Explanation _____

Method 2

Explanation ____

_____[4]

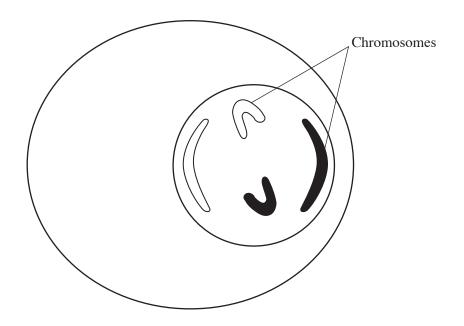

12	(a)	The colour of the spots in Dalmatian dogs is determined by a gene allele (gene) for black spots is dominant to the allele (gene) for brapots.		Examiner Only Marks Remark	k
		© iStockphoto / Thinkstock			
		Let B represent the allele (gene) for black spots. Let b represent the allele (gene) for brown spots.			
		A Dalmatian which is heterozygous for black spots is crossed with Dalmatian with brown spots.	h a		
		(i) Give the genotypes for this cross.			
		Heterozygous × Brown spotted Dalmatian	1		
			_ [2]		
		(ii) Use a Punnett square to show the possible genotypes of the offspring.			
			[2]		
		(iii) Give the phenotypes of the offspring and the ratio of the phenotypes.			
		Phenotypes and			
		Ratio	[2]		

(b)	A breeder purchases another black spotted Dalmatian. She carries out a back cross (test cross) to check the genotype of this Dalmatian.	Examiner Only Marks Remark
	All of the puppies in the litter had black spots.	
	Draw one Punnett square to show how this litter was produced.	
	[3]	
(c)	The hormone insulin regulates blood sugar levels in the body.	
	(i) Susan is not able to produce enough insulin. What condition does she suffer from?	
	[1]	
	(ii) How does insulin regulate blood sugar levels?	
	(ii) How does insulin regulate blood sugar levels?	
	[1]	

The flow diagram shows some stages in the production of human insulin by genetic engineering.

Examiner Only

Marks Remark


(iii) Complete the boxes for stages $\mathbf{3},\,\mathbf{4},\,\mathbf{6}$ and $\mathbf{7}.$

[4]

(iv)	State one advantage of making human insulin using genetic engineering.	Examiner Only Marks Remark
(d) (i)	Name one of the two scientists who initially used x-ray diffraction to work out the shape of DNA.	1
(ii)	This knowledge was then used by other scientists to build a 3D model of DNA. Circle the shape below which best shows the structure of DNA.	
© iSto	© Hemera / Thinkstock © Hemera / Thinkstock [1]

(e) Chromosomes are made up of genes which are made of DNA. The diagram shows four chromosomes in a cell before it divides.

Examiner Only				
Marks	Remark			

(i)	Name one	type of cell	that is	produced a	as a result of
١	.IJ	I valle one	type of cen	mat 15	produced a	is a resuit or.

meiosis ______ [2]

(ii) Give two ways by which mitosis differs from meiosis.

1. ______

2. _____

_____[2]

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.