Surname				Othe	r Names			
Centre Num	nber				Candid	ate Number		
Candidate S	Signat	ure						

General Certificate of Secondary Education November 2006

SCIENCE: SINGLE AWARD A (MODULAR) Energy and Electricity (Module 17)

346017

Thursday 23 November 2006 Morning Session

For this paper you must have:

- a black ball-point pen
- an objective test answer sheet
- You may use a calculator.

Time allowed: 30 minutes

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title 'Energy and Electricity' printed on it.
- Attempt **one Tier only**, **either** the Foundation Tier **or** the Higher Tier.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Answer **all** the questions for the Tier you are attempting.
- Record your answers on the separate answer sheet only.
- Do all rough work in this book, **not** on your answer sheet.

Instructions for recording answers

• Use a black hall-noint pen

• Ose a black bail-point pen.				
• For each answer completely fill in the circle as shown:	1 〇	2 ●	3 ()	4 〇
• Do not extend beyond the circles.				
• If you want to change your answer, you must cross out your original answer, as shown:	1 〇	2 X	3 ()	4
• If you change your mind about an answer you have crossed out and now want to choose it, draw a ring around the cross as shown:	1 〇	2	3 ()	4 ★

Information

• The maximum mark for this paper is 36.

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you cross out **completely** the work that is not to be marked.

You must do **one Tier** only, **either** the Foundation Tier **or** the Higher Tier. The Higher Tier starts on page 16 of this booklet.

FOUNDATION TIER

SECTION A

Questions **ONE** to **FIVE**.

In these questions match words in the list with the numbers.

Use each answer only once.

Mark your choices on the answer sheet.

QUESTION ONE

We use symbols for the components in circuit diagrams.

Match words from the list with the numbers 1-4 in the table.

fuse

lamp

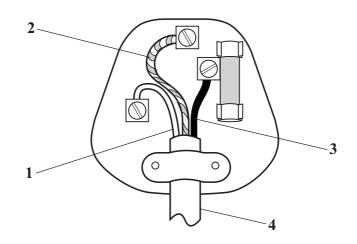
thermistor

variable resistor

Symbol	Component
	1
	2
	3
	4

QUESTION TWO

The diagram shows the inside of a 3-pin plug.


Match words from the list with the labels 1-4 on the diagram.

blue plastic

brown plastic

green and yellow plastic

white plastic

QUESTION THREE

The table is about the resistance of different components.

Match components from the list with the numbers 1-4 in the table.

diode

filament lamp

LDR

thermistor

Resistance	Component
its resistance decreases as light intensity increases	1
its resistance decreases as temperature increases	2
its resistance depends on the direction of the current flowing through it	3
its resistance increases as temperature increases	4

QUESTION FOUR

The various methods of producing electricity affect the environment in different ways.

Match words from the list with the numbers 1-4 in the sentences.

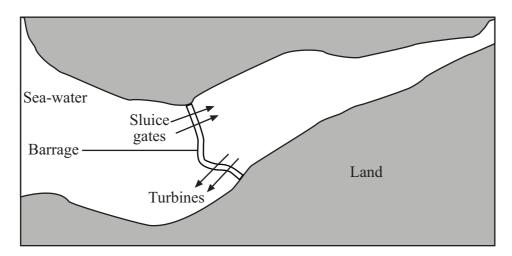
 fossil fuels

 hydroelectric schemes

 nuclear fuels

 wind farms

 Polluting gases are released into the air by using ... 1

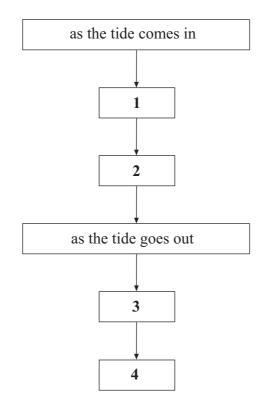

 Upland river valleys are dammed when building ... 2

 Noise and visual pollution of hills and coasts can be caused by ... 3

 Dangerous radioactive waste is produced by using ... 4

QUESTION FIVE

The map shows a tidal barrage across an estuary.


Match statements from the list with the boxes 1-4 in the flow chart, to explain how the barrage works.

electricity is generated

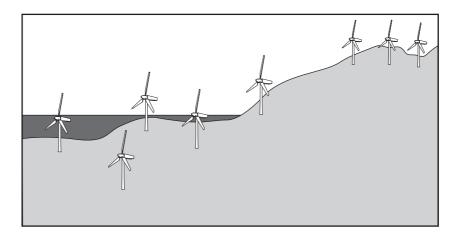
water flows through the sluice gates

water flows through the turbines

water is trapped behind the barrage

SECTION B

Questions SIX and SEVEN.


In these questions choose the best **two** answers.

Do **not** choose more than two.

Mark your choices on the answer sheet.

QUESTION SIX

The diagram shows a wind farm.

Which two statements about the use of wind farms are true?

Electricity can always be generated

No fuel is used

No sulphur dioxide is produced

Steam is produced

They cause no noise pollution

QUESTION SEVEN

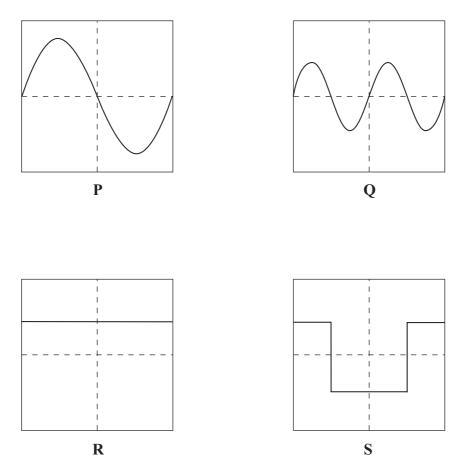
Fuses are often used with electrical appliances.

Which two of the statements, P, Q, R, S and T, are correct?

- P if a fault causes too large a current to flow, the fuse causes a break in the circuit
- **Q** the fuse is connected to the neutral terminal in a plug
- **R** the fuse should have a lower value than the current which flows through the appliance when it is working normally
- S the wire in the fuse melts when it gets too hot
- T when the wire in the fuse melts, the circuit is completed

SECTION C

Questions EIGHT to TEN.


Each of these questions has four parts.

In each part choose only **one** answer.

Mark your choices on the answer sheet.

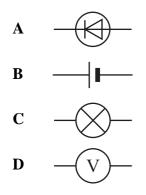
QUESTION EIGHT

Four different power supplies are connected in turn to an oscilloscope. The oscilloscope settings are not changed. The traces, **P**, **Q**, **R** and **S**, are shown below.

8.1 Which of the traces shows the greatest peak voltage?

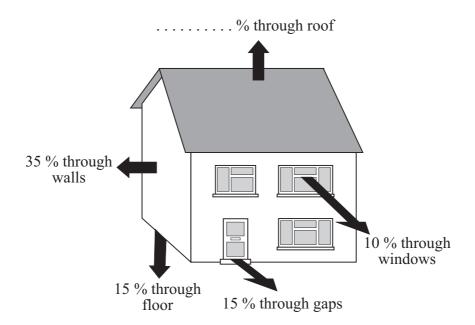
- A P
- B Q
- C R
- D S

8.2 Which trace shows a d.c. supply?


A P

- B Q
- C R
- D S

8.3 Trace **P** represents a supply of frequency 60 Hz.


What is the frequency of supply \mathbf{Q} ?

- **A** 30 Hz
- **B** 60 Hz
- **C** 90 Hz
- **D** 120 Hz
- 8.4 Which component could produce, by itself, one of the traces shown?

QUESTION NINE

The diagram shows the ways in which heat can be lost from a house.

- 9.1 What percentage of heat is lost through the roof?
 - A 15%
 - **B** 20%
 - C 25 %
 - **D** 35 %

9.2 Which of the following might increase the amount of heat lost through the roof?

- **A** Fitting black roof tiles
- **B** Fitting loft insulation
- **C** Fitting thicker roof tiles
- **D** Reducing the temperature in the house

- 9.3 Warm air rises to the top of the house by ...
 - A conduction.
 - **B** convection.
 - **C** evaporation.
 - **D** radiation.

You may find the following formula useful when answering this question.				
energy transferred (kilowatt - hour, kWh)	=	power (kilowatt, kW)	х	time (hour, h)

9.4 To keep the house warm, the central heating system has to transfer 8 kilowatts.

The energy transferred in 8 hours is . . .

- A 1 Unit.
- **B** 8 Units.
- **C** 16 Units.
- **D** 64 Units.

QUESTION TEN

Magnetic fields can be used to produce electric currents.

10.1 A coil of wire is part of a complete circuit.

Which object will induce a current in the coil when it is moved into the coil?

- A A bar magnet
- **B** A brass bar
- C A copper bar
- **D** An iron bar
- **10.2** A coil of wire is part of a complete circuit.

Which object will induce a current in the coil when it is moved out of the coil?

- A A bar magnet
- **B** A brass bar
- C A copper bar
- **D** An iron bar
- **10.3** The generator at a power station . . .
 - A has either a rotating coil or a rotating magnet.
 - **B** has neither a rotating coil nor a rotating magnet.
 - **C** must have a coil rotating in a magnetic field.
 - **D** must have a magnet rotating inside a coil.

10.4 Read this part of a student's notebook.

If a coil of wire cuts through a magnetic field then a potential difference is induced between the ends of the coil.

The size of this potential difference is greater when

- the area of the coil is greater
- the number of turns on the coil is greater
- the speed of the coil is greater
- the strength of the magnetic field is greater

How many of the bullet points are correct?

- A None of them
- **B** Only two of them
- **C** Only three of them
- **D** All of them

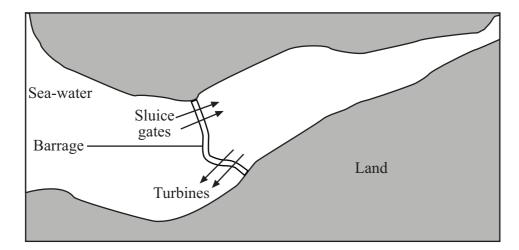
END OF TEST

You must do **one Tier** only, **either** the Foundation Tier **or** the Higher Tier. The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION A

Questions ONE and TWO.

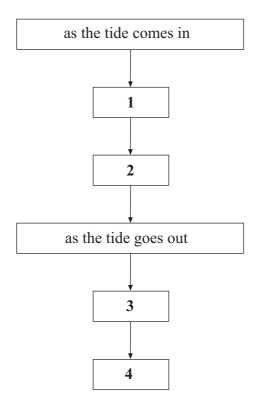

In these questions match words in the list with the numbers.

Use each answer only once.

Mark your choices on the answer sheet.

QUESTION ONE

The map shows a tidal barrage across an estuary.


Match statements from the list with the boxes 1-4 in the flow chart, to explain how the barrage works.

electricity is generated

water flows through the sluice gates

water flows through the turbines

water is trapped behind the barrage

QUESTION TWO

This question is about mains electricity.

Match words from the list with the numbers 1-4 in the sentences.

earth

live

neutral

positive

In the mains electricity supply, the ... 1 ... terminal stays at close to zero volts with respect

to $\ldots 2 \ldots$.

The $\ldots 3 \ldots$ terminal alternates between $\ldots 4 \ldots$ and negative potential difference with respect to the neutral terminal.

SECTION B

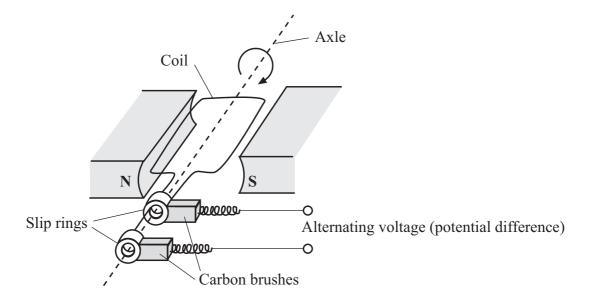
Questions **THREE** and **FOUR**.

In these questions choose the best two answers.

Do **not** choose more than two.

Mark your choices on the answer sheet.

QUESTION THREE


Fuses are often used with electrical appliances.

Which two of the statements, P, Q, R, S and T, are correct?

- P if a fault causes too large a current to flow, the fuse causes a break in the circuit
- **Q** the fuse is connected to the neutral terminal in a plug
- **R** the fuse should have a lower value than the current which flows through the appliance when it is working normally
- S the wire in the fuse melts when it gets too hot
- T when the wire in the fuse melts, the circuit is completed

QUESTION FOUR

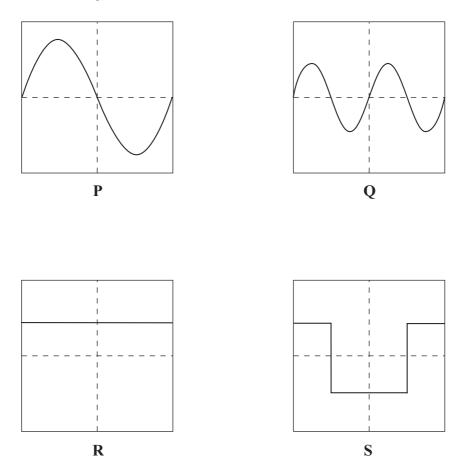
The diagram shows a simple generator.

Which two statements, J, K, L, M and N, are false?

- J the brushes change a.c. to d.c.
- K the slip rings prevent the wires from getting tangled up
- L the stronger the magnetic field, the greater the voltage produced
- M when the coil spins faster, the frequency of the electricity generated decreases
- N the voltage produced increases if the number of turns on the coil is increased

SECTION C

Questions **FIVE** to **TEN**.


Each of these questions has four parts.

In each part choose only **one** answer.

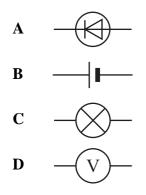
Mark your choices on the answer sheet.

QUESTION FIVE

Four different power supplies are connected in turn to an oscilloscope. The oscilloscope settings are not changed. The traces, **P**, **Q**, **R** and **S**, are shown below.

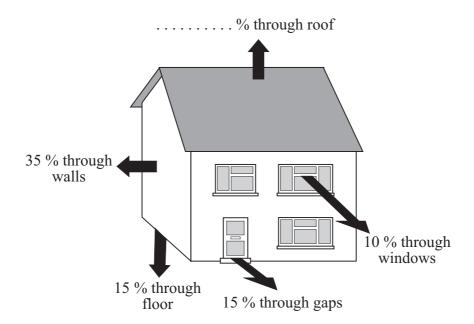
5.1 Which of the traces shows the greatest peak voltage?

- A P
- B Q
- C R
- D S


5.2 Which trace shows a d.c. supply?

- A P
- B Q
- C R
- D S

5.3 Trace **P** represents a supply of frequency 60 Hz.


What is the frequency of supply \mathbf{Q} ?

- **A** 30 Hz
- **B** 60 Hz
- **C** 90 Hz
- **D** 120 Hz
- 5.4 Which component could produce, by itself, one of the traces shown?

QUESTION SIX

The diagram shows the ways in which heat can be lost from a house.

- 6.1 What percentage of heat is lost through the roof?
 - A 15%
 - **B** 20%
 - C 25 %
 - **D** 35 %

6.2 Which of the following might increase the amount of heat lost through the roof?

- **A** Fitting black roof tiles
- **B** Fitting loft insulation
- **C** Fitting thicker roof tiles
- **D** Reducing the temperature in the house

- 6.3 Warm air rises to the top of the house by ...
 - A conduction.
 - **B** convection.
 - **C** evaporation.
 - **D** radiation.

You may find the following	formul	a useful when ans	wering t	his question.
energy transferred (kilowatt - hour, kWh)	=	power (kilowatt, kW)	х	time (hour, h)

6.4 To keep the house warm, the central heating system has to transfer 8 kilowatts.

The energy transferred in 8 hours is . . .

- A 1 Unit.
- **B** 8 Units.
- **C** 16 Units.
- **D** 64 Units.

QUESTION SEVEN

Magnetic fields can be used to produce electric currents.

7.1 A coil of wire is part of a complete circuit.

Which object will induce a current in the coil when it is moved into the coil?

- A A bar magnet
- **B** A brass bar
- C A copper bar
- **D** An iron bar
- 7.2 A coil of wire is part of a complete circuit.

Which object will induce a current in the coil when it is moved out of the coil?

- A A bar magnet
- **B** A brass bar
- C A copper bar
- **D** An iron bar
- 7.3 The generator at a power station . . .
 - A has either a rotating coil or a rotating magnet.
 - **B** has neither a rotating coil nor a rotating magnet.
 - **C** must have a coil rotating in a magnetic field.
 - **D** must have a magnet rotating inside a coil.

7.4 Read this part of a student's notebook.

If a coil of wire cuts through a magnetic field then a potential difference is induced between the ends of the coil.

The size of this potential difference is greater when

- the area of the coil is greater
- the number of turns on the coil is greater
- the speed of the coil is greater
- the strength of the magnetic field is greater

How many of the bullet points are correct?

- A None of them
- **B** Only two of them
- **C** Only three of them
- **D** All of them

QUESTION EIGHT

The drawing shows a pan on the top of a cooker. The pan contains soup.

Some heat is lost through the metal walls of the pan to the surroundings.

- 8.1 The energy spreads through the soup by . . .
 - **A** free electrons colliding with ions.
 - **B** heat rising.
 - **C** the soup contracting and falling as it is heated.
 - **D** the soup expanding and rising as it is heated.
- 8.2 The energy is transferred through the metal walls of the pan by ...
 - **A** free electrons colliding with ions.
 - **B** heated metal expanding and rising.
 - **C** infra red waves passing through the metal.
 - **D** the atoms gaining energy and moving faster through the metal.
- 8.3 The outer walls of the pan transfer energy to the surroundings by . . .
 - **A** free electrons colliding with ions.
 - **B** infra red waves passing through the air.
 - **C** metal atoms gaining energy and escaping into the air.
 - **D** the air contracting and falling as it is heated.


- 8.4 The air in contact with the outer walls of the pan . . .
 - A contracts and falls because of its decreased density.
 - **B** contracts and falls because of its increased density.
 - **C** expands and rises because of its decreased density.
 - **D** expands and rises because of its increased density.

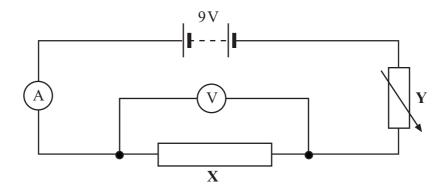
QUESTION NINE

The chart gives information about solar cell panels used for producing electricity.

The chart shows:

- the area of the panels
- the power produced by the panels
- the electrical energy produced each year by using the panels
- the mass of carbon dioxide saved each year by using the panels.

- 9.1 What is the minimum area of panel that would be needed to power a 2.5 kW heater?
 - $A = 20 \, m^2$
 - **B** $25 \, {\rm m}^2$
 - $C = 30 \, m^2$
 - **D** $35 \, \text{m}^2$
- 9.2 How much carbon dioxide could be saved each year by using panels with an area of 15 m^2 ?
 - A 500 kg
 - **B** 750 kg
 - C 1000 kg
 - **D** 1750 kg


- **9.3** What is the minimum area of panel that a household would need in order to produce 7000 kWh of electricity in a year?
 - **A** $20 \, \text{m}^2$
 - **B** 25 m²
 - **C** 30 m²
 - **D** 35 m²
- **9.4** The average cost of electricity each year for a household is £325. The householder thinks about installing solar cell panels. A suitable system will cost £12900.

What is the approximate payback time?

- A 32 years
- **B** 36 years
- C 40 years
- **D** 48 years

QUESTION TEN

Some students used the circuit shown below to determine the resistance of X. Component Y was adjusted to give a range of values.

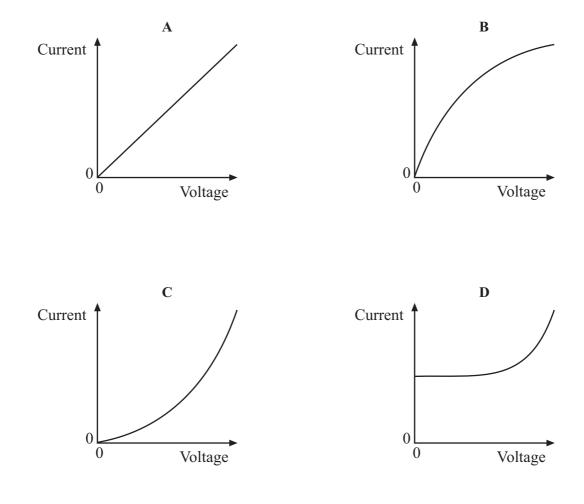
When the potential difference across \mathbf{X} was 6 V, the current flowing through it was 0.2 A.

10.1 What was the resistance of **X**?

- **A** 0.75 Ω
- **B** 3.33 Ω
- \mathbf{C} 6.00 Ω
- \mathbf{D} 30.00 Ω
- 10.2 The current through X remained at 0.2 A.

What was the resistance of component **Y**?

- **A** Half the resistance of **X**.
- **B** The same as the resistance of **X**.
- **C** Twice the resistance of **X**.
- **D** Four times the resistance of **X**.


10.3 The resistance of Y is increased.

	Current flowing through X	Potential difference across X
Α	decreases	decreases
В	decreases	increases
С	increases	decreases
D	increases	increases

How do the current flowing through X and the potential difference across X change?

10.4 X is replaced by a filament lamp.

Which current-voltage graph, A, B, C or D, is correct for a filament lamp?

END OF TEST

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page