Surname			Othe	er Names			
Centre Numb	er			Candida	ate Number		
Candidate Sig	gnature						

General Certificate of Secondary Education June 2003

SCIENCE: SINGLE AWARD (CO-ORDINATED) 3463/3F FOUNDATION TIER Paper 3

Tuesday 17 June 2003 9.00 am to 9.45 am

F

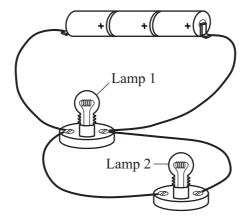
In addition to this paper you will require:
a ruler.
You may use a calculator.

Time allowed: 45 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want marked.

Information


- The maximum mark for this paper is 45.
- Mark allocations are shown in brackets.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use					
Number	Mark	Number	Mark		
1		5			
2		6			
3		7			
4					
Total (Column	1)	-			
Total (Column 2					
TOTAL					
Examiner	Examiner's Initials				

Copyright © 2003 AQA and its licensors. All rights reserved.

Answer all questions in the spaces provided.

1 The drawing shows three identical cells and two identical lamps joined in a circuit.

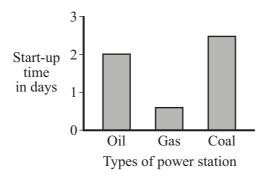
(a) Use the correct symbols to draw a circuit diagram for this circuit.

(3 marks)

(b)	Each of the cells provides a potential difference (voltage) of 1.5 volts.	What is the total potential
	difference (voltage) provided by all three cells?	

volt
(1 mark

(c) Complete this sentence by crossing out the **two** lines in the box that are wrong.


The current through lamp 2 will be

smaller than the same as bigger than

the current through lamp 1.

(1 mark)

2 (a) The bar chart shows the start-up time for different types of fuel-burning power stations.

Which type of power station would be the quickest to start producing electricity?

(1 mark)

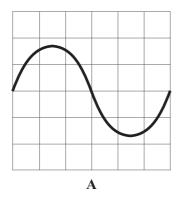
A fuel-burning power station is more reliable than a wind generator at producing electricity. Explain why.

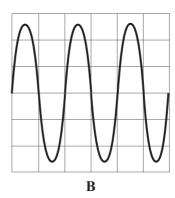
(2 marks)

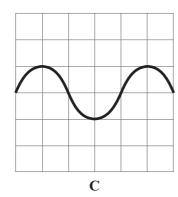
(c) Fuel-burning power stations may produce air pollution. Why does a wind generator not produce any air pollution?

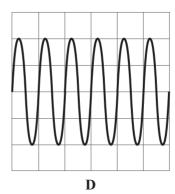
/		\
	4	-)

TURN OVER FOR THE NEXT QUESTION

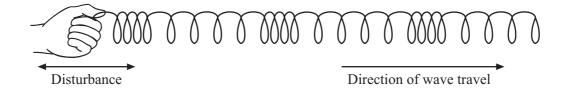

(1 mark)


3 (a) In the box are the names of five waves.


infra red microwaves ultrasonic ultraviolet X-rays		infra red	microwaves	ultrasonic	ultraviolet	X-rays
--	--	-----------	------------	------------	-------------	--------


Which wave is used to:

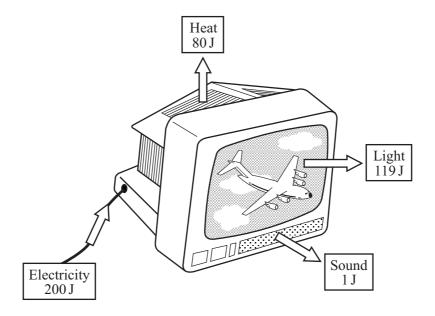
- (b) The diagram shows four oscilloscope wave traces. The controls of the oscilloscope were the same for each wave trace.



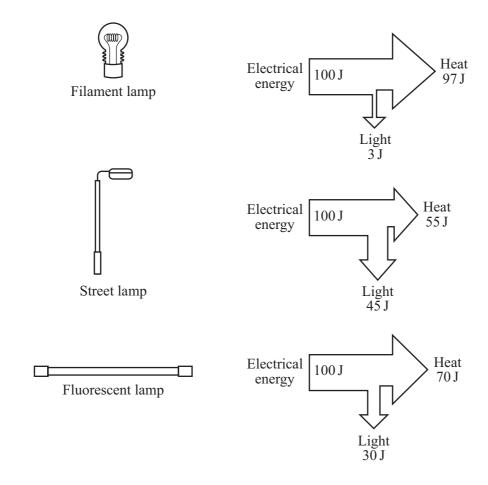
Which one of the waves traces, A, B, C or D, has:

(c) The diagram shows a longitudinal wave in a stretched spring.

Complete the sentence. You should put only one word in each space.	
A longitudinal wave is one in which the causing the wave is in	1 the
same as that in which the wave moves.	
(2 mc	arks)


(d) Which **one** of the following types of wave is longitudinal? Draw a ring around your answer.

light wave	sound wave	water wave	
			(1 mark,


TURN OVER FOR THE NEXT QUESTION

4 (a) The drawing shows the energy transferred each second by a television set.

(1)	What form of energy is transferred as waste energy by the television set?	
		(1 mark)
(ii)	What effect will the waste energy have on the air around the television set?	
		(1 mark)
(iii)	Use the following equation to calculate the efficiency of the television set.	
	$efficiency = \frac{\text{useful energy transferred by device}}{\text{total energy supplied to device}}$	
	total energy supplied to device	
	Efficiency =	
		(2 marks)

(b) The diagrams show the energy transferred each second for three different types of lamp. For each lamp the electrical energy input each second is 100 joules.

TURN OVER FOR THE NEXT QUESTION

5	(a)	Some	e scientists are involved in the search for extra-terrestrial intelligence (SETI).
		(i)	What does extra-terrestrial mean?
			(1 mark)
		(ii)	What equipment is used to carry out this search?
			(1 mark)
	(b)	Some	67, radio pulses, one every 1.337 seconds, were discovered coming from a point in space. e scientists thought the pulses were being produced by intelligent life elsewhere in the <i>erse</i> . Later, it was discovered that the pulses were emitted by a <i>neutron star</i> .
		(i)	Complete this sentence.
			The <i>Universe</i> is made up of at least a billion
		(ii)	Suggest one reason why scientists might have thought that the pulses were produced by intelligent life.
			(1 mark)
		(iii)	What is the link between a <i>neutron star</i> and a <i>super nova</i> ?
			(2 marks)

(c) In 2001, equipment was carried by balloons to a height of 41 km above the Earth's surface. The

equip	oment detected the presence of bacteria.
(i)	The natural movement of air in the Earth's atmosphere may have carried the bacteria up or the bacteria may have come from outer space.
	Suggest one other explanation.
	(1 mark)
(ii)	Suggest one way in which bacteria may have travelled through space to reach the edge of our atmosphere.
	(1 mark)
	(1 mark)

8

TURN OVER FOR THE NEXT QUESTION

6 The drawing shows someone ironing a shirt. The top of the ironing board is covered in a shiny silver-coloured material.

Explain why the shiny silver-coloured material helps to make ironing easier.

	(2 marks)
(b)	The iron must be earthed to make it safe. Which part of the iron is connected to the earth pin of the plug?
	Metal soleplate Plastic part
	(1 mark)
(c)	Name a material that could be used to make the outside case of the plug.
	Give a reason for your choice.
	(2. marks)

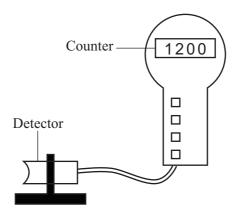
(d) To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Some electrical circuits are protected by a circuit breaker. These switch the circuit off if a fault causes a larger than normal current to flow. The diagram shows one type of circuit breaker. A normal current (15 A) is flowing.

The diagram is not reproduced here due to third-party copyright ${\mathbb D}$ constraints. ${\mathbb D}$

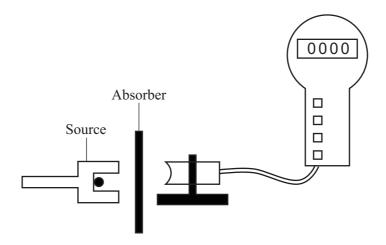
П

The full copy of this paper can be obtained by ordering 3463/3F


from AQA Publications

Tel: 0161 953 1170

Explain what happens when a current larger than 15 A flows. The answer has been started for you.
When the current goes above 15 A, the electromagnet becomes stronger and
(3 marks)



7 (a) The diagram shows a radiation detector and counter being used to measure background radiation. The number shows the count ten minutes after the counter was reset to zero.

(i)	Name one source of background radiation.
	(1 mark)
(ii)	Calculate the average background radiation level, in counts per second. Show clearly how you work out your answer.
	Background radiation level =counts per second (2 marks)

(b) The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.

Two different types of absorber are placed one at a time between the detector and the source. For each absorber, a count is taken over ten minutes and the average number of counts per second worked out. The results are shown in the table.

Absorber used	Average counts per second
No absorber	33
Card 1 mm thick	20
Metal 3 mm thick	2

Explain how these results show that alpha and beta radiation is radiation is not being given out.	being given out, but gamma
	(3 marks)
	(3 marks)

