GCSE Science - Investigative Skills Assignment - Marking Guidelines

Chemistry 1.3 - Testing Concrete

For use until May 2009

Last date for submission for moderation May 2010

Please mark in red ink, and use one tick for one mark. Each part of each question must show some red ink to indicate that it has been seen.

Subtotals for each part of each question should be written in the right hand margin.
Please add annotations where necessary to explain why marks have or have not been awarded.
Enter the marks for Section 1 and Section 2 and the total mark on the front cover of the answer booklet.

The teacher must sign and date the front cover of the ISA.
The papers must be kept in a secure place and must not be returned to candidates.
The marking guidelines show examples of typical responses that candidates may make. However, teachers should use their professional judgement in deciding whether or not to award marks. If, in the judgement of the teacher, the candidate has provided a response which correctly answers the question, then a mark should be awarded even if this response is not shown in the mark guidance. If necessary, the teacher should annotate the script and/or mark guidance to justify the decision.
In the mark guidance:

- the use of a solidus (/) indicates an alternative answer
- the use of brackets () indicates wording that is not essential in the candidate's answer, but makes the guidance clearer.

SECTION 1

	Answer	Additional Guidance	
1	Statement referring to change in the dependent variable eg to see if strength / breaking mass changes. Independent variable correctly identified and linked to dependent variable eg when I changed the \% (by volume) / proportion of cement / sand used	Dependent variable must be identified Just strength or breaking mass alone is not sufficient	1 mark 1 mark
2(a)	Any correct controlled variable: eg - dimensions / shape of beam - test gap / span - position of masses on beam - age of beam - same sand / cement	Accept same \% or volume or mass of cement, sand or water Answer must be consistent with the method used by the candidate	1 mark

	Answer	Additional Guidance	
(b)	Affects the breaking force of the beam Explanation of how it affects the breaking mass eg a thicker beam may be harder to break /concrete gets stronger over time	Accept affects the mass needed to break the beam	1 mark 1 mark
3	Continuous ringed (or answer appropriate to the investigation carried out)		1 mark
4(a)	A random error is a (small) variation in repeated measurements	Accept readings different to true value Do not accept 'human error' Do not accept 'it is an anomalous error'	1 mark
(b)	Explanation of how a random error may arise: eg - blocks may not be completely identical - test gap may vary - position of masses on the block may vary - human error - faulty technique - faulty equipment		1 mark
(c)	Different or improved technique or equipment (1 mark) justification (1 mark) or repeat measurements (1 mark) then calculate new mean ($\mathbf{1}$ mark)	eg better mixing of cement or concrete mixture eg no areas of extra strength or weakness in block	2 marks

	Answer Additional Guidance	
5	Amplified statement for $\mathbf{2}$ marks eg the strength of the block increases for $\mathbf{1}$ mark Simple correct statement for $\mathbf{1}$ mark only plus as the \% cement increases for eg the strength of the block depends 2 marks on the $\%$ cement used or or eg the strength of the block does not eg the strength of the block does not depend on the \% cement used for depend on the $\%$ cement used / 1 mark does not show a trend / is random plus NB the statement MUST relate to the as the results do not show a trend / candidate's own results are random for $\mathbf{2}$ marks	2 marks
6	Table: Correct headings AND units all correct Table with incomplete headings or units for all measured variables for the measured variables gains $\mathbf{1}$ mark eg all headings present $=1$ eg all units present $=1$ Graph/chart: X axis: suitable scales chosen and Accept axes reversed labelled with quantity and units Y axis: suitable scales chosen and labelled with quantity and units Points or bars plotted correctly to within Allow one plotting error out of every 5 points plotted. Allow error carried forward from incorrect plots Suitable line drawn on graph or bars correctly labelled on bar chart If wrong type of graph / chart, maximum $\mathbf{3}$ marks If the independent variable is: continuous should draw a best fit line graph categoric should draw a bar chart discrete may draw either a best fit line graph or a bar chart (but allow dot-to-dot joining of points in this case)	2 marks 1 mark 1 mark 1 mark 1 mark
	Max 18 marks	

SECTION 2

	Answer	Additional Guidance	
$\mathbf{7 (a)}$	20 to 70	Accept: 70 to 20	1 mark
	10	1 mark for correct working Accept answer written in the table or elsewhere.	1 mark
$\mathbf{8}$	2.7	50\% cement Test 4 or 60% cement Test 1 Explanation eg mass added is bigger / smaller than the other 3 results	The higher the \% of cement then the greater the breaking mass / mass added

	Answer	Additional Guidance	
16	Any two from: eg - wood is a renewable resource - cement is made from limestone that needs to be quarried - extracting limestone destroys the landscape - extracting limestone causes pollution - limestone is a non-renewable resource - making cement leads to the emission of polluting gases (carbon dioxide) - making cement needs a lot of energy Quality of written communication Candidates should use at least two technical terms from: eg - (non)renewable - sustainable - pollution - carbon dioxide - greenhouse gas - energy / heat - limestone - quarried - emission	Accept new trees can be planted to replace those cut down Accept wood is used for shuttering / moulds for the concrete Accept cutting down trees reduces CO_{2} uptake from the atmosphere The mark is to be awarded for the correct use of the terms The marker should circle these terms Annotate below candidate's answer with $Q \checkmark$ for mark given or $Q \times$ for mark not given	2 marks
Max 16 marks			

