шјес cbac

GCSE MARKING SCHEME

SCIENCE - PHYSICS

SUMMER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCSE SCIENCE - PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

Physics 1 Foundation Tier 1
Higher Tier 7
Physics 2 Foundation Tier 14
Higher Tier 22
Physics 3 Foundation Tier 29
Higher Tier 36

Physics 1 - Summer 2015

Foundation Tier

Question Number									
FT	HT	Sub-section			Mark	Answer	Accept	Neutral answer	Do not accept
2		(a)	(i)		3	Gamma [rays] , Ultraviolet [waves] / UV , Micro[waves] $3 \times(1)$			
			(ii)		3	At the same speed as (1) Shorter than (1) Lower than (1)			
		(b)	(i)		2	Volume (1) As different volumes will cool at different rates (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	Amount / mass / same level of water		Quantity
			(ii)	I	2	Curve always below given line starting from somewhere above room temperature starting on the y-axis (1) Levelling sooner at room temperature (1)		Line not at same starting point	Any lines to the right
				II	2	Line for black flask is steeper / black flask cooled quicker (1) Because black surfaces are better / good emitters [of IR] (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark. No ecf from the previous part	Accept converse argument about white		Don't cool at the same rate because they're different colours
		Total Mark			12				

Question Number					Answer			Do not accept 3.3 light years
FT	HT	Sub-section				Accept	Neutral answer	
4		(a)	(i)	1	3.3 [years]			
			(ii)	1	99000 [light years]			
			(iii)	1	4500 [million km]			
		(b)	(i)	1	380 [units]			
			(ii)	1	5 [number of waves per cm]			
		Total Mark		5				

Question Number								
FT	HT	Sub-section		Mark	Answer Increases or steps up the voltage / reduces the current (1) to reduce energy / heat losses [in the cables] (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	Accept	Neutral answerImproves efficiency (given)	Do not accept Reduces the power No heat loss
6		(a)		2				
		(b)		1	950000000 [W]	950×10^{6}		950 MW
		(c)		2	Reduce the voltage (1) to a safer value [for use in the home] / because high voltages are more dangerous (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	Step-down the voltage	Increase the current	
		(d)		6	Indicative content: Some types of power station continue working for 24 hours oil powered stations which take a long time to shut down and the demand being small at night while most of the populatio notably at breakfast time and again in early evening. To me brought on stream at very short notice. This is where hydro within seconds by just opening a valve to let the water flow. be used to maintain supply during maintenance or breakdo 5-6 marks The candidate constructs an articulate, integrated account content, which shows sequential reasoning. The answer fuly significant omissions. The candidate uses appropriate scie 3-4 marks The candidate constructs an account correctly linking some some reasoning. The answer addresses the question with terminology and some accurate spelling, punctuation and g 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The an candidate uses limited scientific terminology and inaccurac 0 marks The candidate does not make any attempt or give a relevan	a day and for 365 d to start up again is sleeping but et this demand so ectric power station They, along with wn times of other orrectly linking re y addresses the tific terminology a relevant points, s ome omissions. ammar. swer addresses th in in spelling, pun t answer worthy of	s a year. These inclu rough the day, howe g the daytime there power stations are n are very useful beca ve oil and gas powe ns. nt points, such as tho tion with no irrelevan ccurate spelling, pu as those in the indic andidate uses main estion with significa tion and grammar. dit.	nuclear, coal and r, demand changes, peaks of demand, ded which can be e they can start up stations can also in the indicative clusions or uation and grammar e content, showing appropriate scientific missions. The
		Total Mark		11				

Physics 1 - Summer 2015

Higher Tier

Question Number								
FT	HT	Sub	sectio	Mark	Answer	Accept	Neutral answer	Do not accept
	1	(a)	(i)	2	$\begin{aligned} & \text { One quarter / } 25 \% \text { (1) } \\ & \times 20=5[\mathrm{cpm}](1) \end{aligned}$	Alternative routes to get an answer of 5		
			(ii)	2	Repeat the test / counts per minute / take more readings (1) and find the mean (1) OR count / reading / measure over longer period of time (1) and divide by that number of minutes (1)			
			(iii)	1	Radon OR buildings / soil	Ground / earth		Named rocks / uranium
		(b)	(i)	2	```350-20 (1-for subtraction of 20 from any value) = 330 [cpm] (1)```			
			(ii)	2	Alpha (1) Because the reading is reduced [to background level] by thin card / can't penetrate thin card (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	Alternative for the $2^{\text {nd }}$ mark: If it was beta or gamma the reading wouldn't be reduced by thin card		Alpha with beta or gamma Alpha absorbed by card and gamma absorbed by lead
			(iii)	1	Range of alpha is only a few [about 30] cm in air / can't penetrate the skin or clothes / not very penetrating	Short range in air can't reach them		Only harmful inside the body
			(iv)	2	Aluminium has no effect on the count rate (1) because only gamma passes through aluminium / beta can't pass through aluminium (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	There's still a [small] count rate [beyond lead] (1) only gamma goes through lead (1)	Reference to alpha	
			(v)	1	Background count varies over time / random			
		Total Mark		13				

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
	5	(a)		2	$\begin{align*} & \text { Time }=\frac{3900}{3}(1) \tag{1}\\ & =1300 \\ & \frac{1300}{52}(\text { ecf })=25[\text { hours] }(1) \end{align*}$ Alternative solution: $\begin{align*} & \text { Time }==\frac{3900}{52}(1) \tag{1}\\ & =75 \\ & \frac{75}{3}(\text { ecf })=25[\text { hours] }(1) \end{align*}$			
		(b)	(i)	4	$\begin{aligned} & 3900 \times 30 \mathrm{p}(1) \\ & =117000 \mathrm{p}(1) \\ & \text { conversion to [£]1170 (1) } \\ & \frac{7500}{1170}(\text { ecf })=6.41 \text { [years] (1) } \end{aligned}$ Incorrect rounding loses answer mark. Accept alternative routes	If $16 p$ used, time = 12.02 [years] award 3 marks If 14 p used, time = 13.74 [years] award 3 marks		
			(ii)	2	Money saved each year would increase (1) reducing the pay-back time (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.			
		(c)		2	$\begin{aligned} & \text { Units saved }=3900 \times 25=97500(1) \\ & \mathrm{CO}_{2} \text { saving }=97500(e c f) \times 0.5=48750[\mathrm{~kg}](1) \end{aligned}$			25×0.5
		Total Mark		10				

Physics 2 Summer 2015

Foundation Tier

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
2		(a)		2	Ticks in boxes 3 and 4 (2)	Crosses in boxes		Extra crosses in other boxes (minus 1 for each)
		(b)	(i)	1	400 [counts/min]			
			(ii)	1	100 [days]			
			(iii)	1	Same answer as (ii)			
			(iv)	1	Line drawn below the curve from $(0,800)$ Allow \pm one small square tolerance on $(0,800)$ plot	Line that curves upwards at the end Line that does not extend all the way to 400		A straight line. A line that crosses / touches the one given / touches the time axis. Line on previous grid.
		Total Mark		6				

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
		(d)		2	The resistance of 100 cm would be $20 \Omega / 30 \Omega$ requires a 150 cm length (1) therefore the statement is not true (1) ecf it must be consistent with the first mark The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	10 cm has 2Ω so 100 cm is not 30Ω gets 1 mark only		
		(e)		1	Yes - To check repeatability or No- Results all lie on a straight line / there are no anomalous results	To check if the results match.	Any reference to reliability or accuracy.	To make it more repeatable. Make sure they're right / ok
		Total Mark		11				

Question Number									
FT	HT	Sub-section			Mark	Answer	Accept	Neutral answer	Do not accept
4		(a)			2	$P=120 \times 5(1-$ substitution $)=600[\mathrm{~W}]$ (1)			
		(b)	(i)		2	Mass is a measure of inertia of the bricks (1) Weight is [a measure of the force of] gravity acting on the bricks (1)	Mass is the amount of material (stuff) / matter / particles in an object. Mass is in kg and weight is in N gets 1 mark		Number of particles. Weight is how heavy it is.
			(ii)		1	$\text { mass }=\frac{5000}{10}=500[\mathrm{~kg}]$			
		(c)	(i)		2	5000 and 400 used in addition or subtraction (1) 5400 [N] (1)	Answer only of 4600 gets 1 mark		
			(ii)	I	1	"bigger than"			
				II	1	"equal to"			
		Total Mark			9				

Physics 2 Summer 2015

Higher Tier

Question Number				
FT	HT	Sub-section	Mark	Answer Accept $^{\text {a }}$ Neutral answer ${ }^{\text {a }}$ Do not accept
	3		6	Indicative content: If the vehicle is travelling faster then the thinking distance is increased and the braking distance is also increased. This means that the overall stopping distance is greater (or the converse for a vehicle travelling more slowly). If the brakes are worn (or poor road surface conditions) the thinking distance is unaffected but the braking distance is increased. This again leads to an increased stopping distance (or the converse for new brakes). If the driver has drunk alcohol or is tired the reaction time is bigger and so the thinking distance is greater. Although the braking distance is unaffected the overall stopping distance is greater. 5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. 3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.
		Total Mark	6	

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
1		(a)		2	Hydrogen (1) Helium (1)	$\begin{aligned} & \mathrm{H} \\ & \mathrm{He} \end{aligned}$		$\begin{aligned} & \mathrm{h} \\ & \mathrm{HE} \\ & \text { he } \end{aligned}$
		(b)		4	LHS: red giant (1), white dwarf (1) RHS: supernova (1), black hole (1)			Any words not in box
		Total Mark		6				

Question Number						Accept	Neutral answer	Do not accept
FT	HT	Sub-section		Mark	Answer			
3		(a)	(i)	2	$\begin{array}{\|l\|} \hline 27(1) \\ 350(1) \end{array}$			
			(ii)	3	Plots (2) no tolerance allow ecf on 350 K Straight line joining plotted points (1) $\pm 1 / 2$ small square tolerance	A curve if ecf applied for the last point		
			(iii)	2	Show the line extended backwards to the origin (1) Reading of pressure consistent with their intercept (1)	1 mark if answer of 0 with no extrapolated line shown		Answer of 0 if extrapolated line does not go through 0
			(iv)	2	Pressure increases with temperature / positive correlation (1) In a uniform way (1)	Award 2 marks: [Directly] proportional / as one doubles the other doubles too		
		(b)		2	$12(1) \times 80=960[\mathrm{~N}](1)$			
		Total Mark		11				

Question Number						Accept	Neutral answer	Do not accept
FT	HT	Sub-section			Answer			
4		(a)		2	Ticks in bottom 2 boxes Lose 1 mark for each extra tick			
		(b)		3	Any number of TIR shown (1) or 3 TIR shown (2) Straight line joining outgoing ray (1)			
		(c)		4	$\begin{array}{\|l} \text { Refract (1) } \\ \text { Travel along the boundary (1) } \\ \text { Totally internally reflect / TIR (1) } \\ \hline \text { Totally internally reflect / TIR (1) } \end{array}$			
		Total Mark		9				

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
5		(a)	(i)	2	$\begin{aligned} & 0.1 \times 8(1) \\ & 0.8[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1) \end{aligned}$			
			(ii)	1	-0.6 [kg m/s]			+0.6
			(iii)	1	Total momentum before collision $=+0.2[\mathrm{~kg}$ m / s] (ecf from parts (i) \&(ii) probably giving an answer of +1.4)			
			(iv)	1	Same answer as (iii)			
			(v)	2	$v_{\mathrm{B}}=\frac{0.2}{0.2}$ 1 mark for the numerator (ecf from (iv)) 1 mark for the denominator (i.e. 0.2)	If no workings shown: Award 2 marks for an answer of $1[\mathrm{~m} / \mathrm{s}]$ Award 2 marks for an answer of $7[\mathrm{~m} / \mathrm{s}]$ when ecf applied		
		(b)	(i)	2	$t=\frac{(0-8)}{-160}$ 1 mark for the numerator of $(0-8)$ or $(8-0)$ 1 mark for the denominator of -160 or 160 respectively	If no workings shown: Award 2 marks for an answer of 0.05 Award 1 mark for an answer of -0.05		
			(ii)	2	Force = $1.6[\mathrm{~N}]$ (1) To the left / opposite [direction to force applied to B] (1)	In the negative vector / velocity direction (for second mark) Accept $=-1.6[\mathrm{~N}]$ for both marks Award 1 mark for: force on A is equal and opposite / same size and opposite		Force is backwards / same size
		Total Mark		11				

Question Number								
FT	HT	Sub	section	Mark	Answer	Accept	Neutral answer	Do not accept
6		(a)	(i)	1	Gravity and radiation / pressure			
			(ii)	1	Forces are balanced / they are balanced	Equal and opposite / forces cancel each other out		The same / equal / because it has a supply of hydrogen / its balanced
		(b)	(i)	1	${ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{0} \mathrm{e}+{ }_{1}^{0} \mathrm{e}$	$4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{0} \mathrm{e}$		
			(ii)	3	Four hydrogen [nuclei] / protons join / fuse (1) to form a helium [nucleus] (1) and two positrons (1)	Antielectron instead of positron		Positive electron / react / bond / collide / alpha particle
		(c)		1	Energy / gamma is released	They annihilate / destroy each other / cancel each other out	An explosion takes place	They neutralise each other
		Total Mark		7				

PHYSICS 3 Summer 2015

Higher Tier

Question Number				Mark Answer		Accept			
FT	HT	Sub-section				Neutral answer	Do not accept		
	2	(a)	(i)	1	Gravity and radiation / pressure				
			(ii)	1	Forces are balanced / they are balanced	Equal and opposite / forces cancel each other out		The same / equal / because it has a supply of hydrogen / its balanced	
		(b)	(i)	1	${ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{0} \mathrm{e}+{ }_{1}^{0} \mathrm{e}$	$4_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+2_{1}^{0} \mathrm{e}$			
			(ii)	3	Four hydrogen [nuclei] / protons join / fuse (1) to form a helium [nucleus] (1) and two positrons (1)	Antielectron instead of positron		Positive electron / react / bond / collide / alpha particle	
			(iii)	3	$\begin{aligned} & \text { Mass on left hand side }=4 \times 1.00728=4.02912(1) \\ & {[\text { Mass on right hand side }=4.00151]} \\ & \text { Mass defect }=4.02912 \text { ecf }-4.00151 \\ & =0.02761[\mathrm{u}](1) \\ & E=m c^{2}=0.02761 \mathrm{ecf} \times 1.66 \times 10^{-27} \\ & =4.58326 \times 10^{-29}[\mathrm{~kg}](1) \\ & \times\left(3 \times 10^{8}\right)^{2}=4.12 \times 10^{-12}[\mathrm{~J}](1) \end{aligned}$ Alternative solution: LHS: $4 \times 1.00728=4.02912(1)$ 4.02912 ecf $\times 1.66 \times 10^{-27}=6.6883392 \times 10^{-27}[\mathrm{~kg}]$ and RHS: $4.00151 \times 1.66 \times 10^{-27}=6.6425066 \times 10^{-27}[\mathrm{~kg}]$ (1) LHS: 6.6883392 ecf $\times\left(3 \times 10^{8}\right)^{2}=6.01950528 \times 10^{-10}[\mathrm{~J}]$ and RHS: $6.6425066 \times\left(3 \times 10^{8}\right)^{2}=5.97825594 \times 10^{-10}[\mathrm{~J}]$ (1) Energy loss $=(6.01950528-5.97825594) \times 10^{-10} \mathrm{~J}$ $=4.12 \times 10^{-12}[\mathrm{~J}]$ (1)				
		(c)		1	Energy / gamma is released	They annihilate / destroy each other / cancel each other out	An explosion takes place	They neutralise each other	
		Total Mark		11					

Question Number					Answer			
FT	HT	Sub-section		Mark			Neutral answer	Do not accept
	4	(a)		2	Full core drawn so as to pass inside both coils and labelled IRON CORE (1) Function is to take the magnetic field [from the primary coil] into the secondary coil / linking the magnetic field of primary and secondary coils (1)	To increase the field strength through the secondary coil		A half core drawn or a single line drawn Links the two coils for the $2^{\text {nd }}$ mark
		(b)	(i)	2	As the number of turns on the input coil increases, the output voltage decreases (1) at a decreasing rate (1)	Award 1 mark for negative correlation Award 2 marks for inversely proportional	in a nonlinear way / non-uniform way / reference to the gradient
			(ii)	2	$\frac{400}{60}=\frac{2000}{N_{2}}$ (e.g. using paired values from graph) (1-subs) $N_{2}=2000 \times \frac{60}{400}=300(1-\mathrm{ans})$			
			(iii)	3	(1-for 120 from graph) $P=V I$ so $I=\frac{480}{120}$ (1-substitution) $I=4$ [A] (1-manipulation and answer)	$\begin{aligned} & \hline 480=120 \times I \\ & \text { gets first } 2 \text { marks } \\ & \text { Use of voltage } \\ & \text { value between } 0 \\ & -230 \mathrm{~V} \end{aligned}$		
			(iv)	1	Line drawn to the left and always below the line that is given in the question			Any touching of the original line
		Total Mark		10				

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
	5	(a)	(i)	3	Scale added to temperature axis in $10^{\circ} \mathrm{C}$ intervals (1) Points $\pm 1 / 2$ small square division (1) Best fit straight line with some points either side (1)			
			(ii)	1	Decreases			OK
			(iii)	1	0 [J]			
		(b)		4	$\begin{aligned} & T_{1}=270 \mathrm{~K}, T_{2}=315 \mathrm{~K} \\ & p_{1}=3 \times 10^{6}, p_{2}=? \\ & p_{2}=p_{1} \times \frac{T_{2}}{T_{1}}=3 \times 10^{6} \times \frac{315}{270} \\ & (1-\text { temp conversions }) \\ & (1-\text { substitution }) \\ & p_{2}=3.5 \times 10^{6}(1-\text { manipulation and answer }) \\ & \text { Comment which is dependent on their calculation } \\ & \text { (1) e.g. if correct answer }- \text { no danger of explosion } \\ & \text { stated } \end{aligned}$	$\begin{aligned} & \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\ & \frac{3 \times 10^{6}}{-3}=\frac{p_{2}}{42} \\ & p_{2}=-42 \times 10^{6}[\mathrm{~Pa}] \end{aligned}$ No danger of explosion Award: 0 for Kelvin conversion 1 for substitution of $-3^{\circ} \mathrm{C}$ 1 for answer with negative sign 1 for correct comment based on their answer		
		Total Mark						

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

