Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4463/02

SCIENCE A/PHYSICS

PHYSICS 1 HIGHER TIER

A.M. MONDAY, 16 June 2014

1 hour

Suitable for Modified Language Candidates

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	12		
2.	12		
3.	6		
4.	9		
5.	15		
6.	6		
Total	60		

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2. In calculations you should show all your working.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answers to questions **2**(*a*)(i) and **6**.

Equations

density = $\frac{\text{mass}}{\text{volume}}$	$ \rho = \frac{m}{V} $
power = voltage × current	P = VI
energy transfer = power × time	E = Pt
units used (kWh) = power (kW) × time (h) cost = units used × cost per unit	
% efficiency = $\frac{\text{useful energy [or power] transfer}}{\text{total energy [or power] input}} \times 100$	
wave speed = wavelength × frequency	$c = \lambda f$
speed = distance time	

SI multipliers

Prefix	Multiplier
p 10 ⁻¹²	
n	10 ⁻⁹
μ	10 ⁻⁶
m	10 ⁻³

Prefix	Multiplier
k 10 ³	
M	10 ⁶
G	10 ⁹
Т	10 ¹²

An experiment produced the following results. **All figures have been corrected for background radiation**.

Absorber placed between detector and source	Count rate (counts per minute)
No absorber	5000
Thin card	5000
3 mm thickness of aluminium	4000
10 mm thickness of lead	500

[1]	Name one radiation that is not given out by this source.	(i)	(a)
[1]	How much of the original radiation is absorbed by the aluminium?	(ii)	
s per minute	counts		
[1]	How much of the original count rate was produced by beta radiation?	(iii)	
s per minute	counts		

(b) When gamma radiation passes through lead from a different source, the counts per minute depend on the thickness of lead between the source and the counter. This is shown in the table.

Thickness of lead between source and detector (mm)	Count rate (counts per minute)
0	8000
10	4000
30	1000
40	500
50	250

only

4463 020005

[3]

Plot the data on the grid below and draw a suitable line.

count rate (counts per minute)

thickness of lead between source and detector (mm)

Use the graph to describe the relationship between the count rate and the thickness of lead. [2] (ii)

Turn over. (4463-02) © WJEC CBAC Ltd.

Examine
only

(iii)	The count rate for a 10 mm thickness of lead is 4 000 counts per minute.		only
	(1)	What fraction of this would be detected (found) for a 30 mm thickness of lead? [2]	
		fraction =	
	(II)	What count rate would be detected (found) for a 60 mm thickness of lead?[1]	
		count rate =counts per minute	
	Shov	w how you arrived at your answer. [1]	
	•••••		

BLANK PAGE

2. A pupil wants to find the density of an oil. She uses a chemical balance which measures to the nearest gram (g). She places an empty measuring cylinder on to the balance.

She pours some oil into the cylinder. The level of oil in the measuring cylinder is shown.

(a)

4463 020009

(1)	Use this data to find the density of oil.	
	Use an equation from page 2.Show all your workings.	
	Explain each stage in your calculation.	[6 QWC]

•••••		
•••••		

•••••		
•••••		
(ii)	State two ways in which the density of the oil could be found to a accuracy.	greater [2]
	1	
	2	

The table below shows differences between tidal water turbines and wind turbines.

	Tidal water turbine	Wind turbine
Speed of water or wind (m/s)	5	15
Density of water or air (kg/m³)	1000	1
Length of blade (m)	10	35
Area swept out by blade (m²)	314	3850
Power output at this speed (MW)	2.9	1.5

Examine
only

(i)	Use	information from the table opposite to answer the following questions.	C
	(I)	Calculate the difference in power output between the two types of turbine.[1]	
		power =	
		unit =	
	(II)	State one reason why water turbines have a bigger power output than wind turbines. [1]	
(ii)		ain one advantage that tidal water turbines have over wind turbines. Do nontot having a larger power output as an advantage. [2]	
••••••			

3. An electric heater has the following label attached to it.

Serial number A3462012

230 V

1500W

50 Hz

It is used for 8 hours each day for 2 weeks. The cost of the electricity used is £25.20.

(a) Use equations from page 2 and this information. Calculate the cost, in pence, of 1 unit (kWh) of electricity.

[4]

cost = p

(b) Use an equation from page 2. Calculate the number of joules of electrical energy converted to heat and light in this 2 week period. [2]

energy = J

BLANK PAGE

4. The diagram shows part of the National Grid that delivers electrical power to homes and industry from power stations.

- (a) The power station generates $2 \times 10^9 \, \text{W}$ of power, delivering it at a current of $4 \times 10^4 \, \text{A}$ to the step-up transformer.
 - (i) The transformer is 99% efficient. Use an equation from page 2. Calculate the output power. [1]

(ii) The transformer steps up the voltage by a factor of 8. Use your answer to (i) and equations from page 2. Calculate the output current from this transformer. [4]

current = A

(b)	Explain why it is necessary to use transformers in the transmission of electricity to homes along the National Grid. [4]	only
•••••		
•••••		
•••••		
•••••		

5. The graph below shows how the velocity of galaxies moving away from the Earth (called their recession velocity) depends on their distance away from us (in light years).

recession velocity (km/s)

Sir Edwin Hubble put forward this theory. "The recession velocity of a galaxy is directly proportional to its distance from Earth."

Ε	Х	a	n	ηi	n	e
		O	n	l۱	/	

	(ii)	The gradient (steepness) of the graph is Its value is given by: Hubble constant = Explain how the gradient of this line will	age of the Universe	". [2]
(b)	Use	speed of recession of a distant galaxy is the graph to calculate the distance of n. (A light year is equivalent to 9.5 × 10 ¹²	this galaxy from Earth. Give	e your answer [2]
(c)	669. of th You	wavelength of a particular absorption lind 4 nm. It is found to have been red shifted be same absorption line if measured in a laboration between the should use an equation from page 2 to one of light in vacuum, $c = 3 \times 10^8 \text{m/s.}$	y 13.1 nm. Calculate the exped aboratory experiment on Eart	measured as
			frequency =	Hz

(d)	(i)	Explain how Cosmic Microwave Background Radiation (CMBR) provides evidence that supports the Big Bang Theory. [2]	Examiner only
	(ii)	Space has a temperature of about –270 °C (3 K) and is filled with CMBR energy. Explain why the temperature of space will decrease as the Universe continues to expand. [Note that the energy of a wave is directly proportional to its frequency.]	
	•••••		

6.	In an answer to a recent exam question, a candidate wrote: "A SINGLE geostationary satellite stays in the same place and is the only way of relaying all electromagnetic waves around the world."					
	Explain, in detail, what is wrong with the above statement. [6 QW0	2]				

END OF PAPER