Surname

Centre Number

0

Candidate Number

Other Names

GCSE

0241/01 **ADDITIONAL SCIENCE** FOUNDATION TIER

PHYSICS 2

P.M. MONDAY, 30 January 2012

45 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	2			
2.	5			
3.	3			
4.	7			
5.	5			
6.	3			
7.	6			
8.	4			
9.	7			
10.	4			
11.	4			
Total	50			

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2 of the examination paper. In calculations you should show all your working.

EQUATIONS

Resistance	=	voltage current
Current	=	power voltage
Distance	=	speed \times time
Acceleration (or deceleration)	=	change in speed time
Resultant force	=	mass × acceleration
Work	=	force × distance

BLANK PAGE

3

 $\begin{array}{c} 0241 \\ 010003 \end{array}$

 Answer all questions in the spaces provided.

 1. Choose one phrase from the box below to complete each of the sentences about car safety. [2]

 seat belt
 air bag
 head rest
 crumple zone

4

(a) In a collision from behind, injury to the driver is reduced by the

(0241-01)

(b) The increases the time for a moving car to stop.

Examiner only

The graph shows how the speed of an athlete changes after crossing the finishing line of a race. Speed (m/s) 10 8 6 4 2 0 Time (s) 0 1 2 3 4 Use the graph to answer the following questions. What was his speed when he finished the race? (a)[1] (b)At what time was his speed equal to 2 m/s? [1] Use the equation: (c)(i) deceleration = $\frac{\text{change in speed}}{\text{time}}$ to calculate the deceleration in the first 2 seconds after finishing the race. [2] Deceleration = m/s^2 (ii) How does the graph show that the athlete's deceleration between 2s and 5s is lower than that calculated in (c)(i)? [1] 5

5

2.

 $\begin{array}{c} 02\,41 \\ 0\,10\,0\,05 \end{array}$

Examiner only

			0	Examiner only
3.	Carb years	oon-14 5.	is present in all living material. It emits beta particles and has a half life of 5700	
	(a)	Nam	the part of the carbon-14 atom which emits a beta particle. [1]	
	<i>(b)</i>	A sa	mple of carbon-14 has an activity of 200 counts per minute.	
		(i)	What will be the activity after 5700 years? [1]	
			Activity = counts per minute	
		(ii)	After how many years will the activity have fallen to 50 counts per minute? [1]	
			years	

6

(0241-01)

Examiner only

The following diagram shows a simple form of a 2-way switch circuit.

- The switches in these circuits are used at the top and bottom of stairways, so that the lights can be turned on or off from either place. Bottom Top switch switch Fuse up up down down Α 230 V 115 Watts power supply B How can you tell from the diagram that wire A is the live lead? [1] (a)Complete the following table. *(b)* [2] Bottom switch Top switch Lamp position position ON or OFF UP UP ON UP DOWN
 - (c) Use the equation

4.

current =
$$\frac{\text{power}}{\text{voltage}}$$

DOWN

to calculate the current flowing through the lamp.

DOWN

 Current =
 A

 (d)
 State why a 13 A fuse would be unsuitable for this circuit.
 [1]

 (e)
 Which wire is included in mains circuits but is not shown in the circuit diagram?
 [1]

7

[2]

 $0241 \\ 010007$

Examiner only

5. The diagram shows a ball falling through the air. It is acted upon by two forces, weight (W) and air resistance (A).

Examiner

only

6. Electric circuits in the home use the following devices:

residual current device (r.c.d.) miniature circuit breaker (m.c.b.) fuse	residual current device (r.c.d.)	miniature circuit breaker (m.c.b.)	fuse
--	----------------------------------	------------------------------------	------

9

These devices break circuits for different reasons. Use the devices named in the boxes to complete the table. Each device may be used once, more than once or not at all.

[3]

FAULT	DEVICE THAT OPERATES
The current in the live is very slightly different from the current in the neutral wire.	
It uses an electromagnetic switch to break the circuit very quickly when the current becomes too large.	
It breaks the circuit very quickly when the live wire touches the metal body of an appliance.	

	10	E
Rad	ioactive waste is dangerous to the public. The waste has to be disposed of safely.	
(a)	Explain why radioactive waste is dangerous to people.	[2]
	Give two reasons for not sending the waste into space in rockets	[2]
(0)	1.	
	2	
<i>(c)</i>	Radioactive waste can be buried underground.	
	(i) State why it needs to be monitored for many thousands of years.	[1]
	(ii) State a danger from storing waste underground.	[1]

			11		Examiner only
8.	A mo metre The	oving v es. driver	wehicle makes an emergency stop and comes to rest in a total stopping distance 3° reaction time was 0.6 s and the vehicle was travelling at a speed of 20 m/s.	of 82	
	(a)	Use	the equation		
			distance = speed \times time		
		to ca	alculate the distance travelled whilst the driver was reacting.	[1]	
			Distance travelled =	m	
	(b)	(i)	Calculate the braking distance for the vehicle.	[1]	
			Braking distance =	m	
		(ii)	The vehicle's average speed during braking is 10 m/s . Use the equation		
			time = $\frac{\text{distance}}{\text{average speed}}$		
			to calculate the braking time.	[2]	
			Braking time =	S	

9. A group of pupils set up the following circuit to investigate how the current through a lamp depends on the voltage applied to it.

- (b) The slider on the variable resistor is moved to the end Y.
 - (i) State what effect this has on the current through the lamp.
 - (ii) State what effect this has on the voltage across the lamp.
- (c) They obtained the following results and plotted them on the grid on the next page.

Current (A)	Voltage (V)
0.0	0
1.0	2
2.0	4
2.7	6
3.0	8

(a)

.....

Examiner only

[1]

[1]

10. A radiation film badge is used by scientists who work near radioactive materials. The badges consist of four windows, behind which is a radiation sensitive film. Each badge is inspected at the end of the month and a new one is issued.

(b) At the end of a particular month, the number of counts detected at the windows was as follows:

Counts made in the month	Window at which these counts were detected	Types of radiations detected
9 500	А	Alpha, beta, gamma
5 500	В	
6 250	С	
4 800	D	Gamma

Complete the third column in the table.

(c) How many of the counts were produced from just beta radiation?

Δ

[2]

[1]

Examiner only

