Surname

Other Names

Centre Number Candidate Number

0

GCSE

0237/01

SCIENCE FOUNDATION TIER PHYSICS 1

P.M. FRIDAY, 15 June 2012

45 minutes

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	4					
2.	5					
3.	4					
4.	3					
5.	4					
6.	4					
7.	4					
8.	7					
9.	5					
10.	5					
11.	5					
Total	50					

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

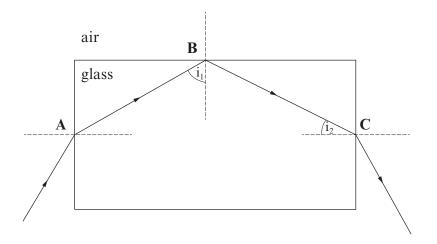
Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

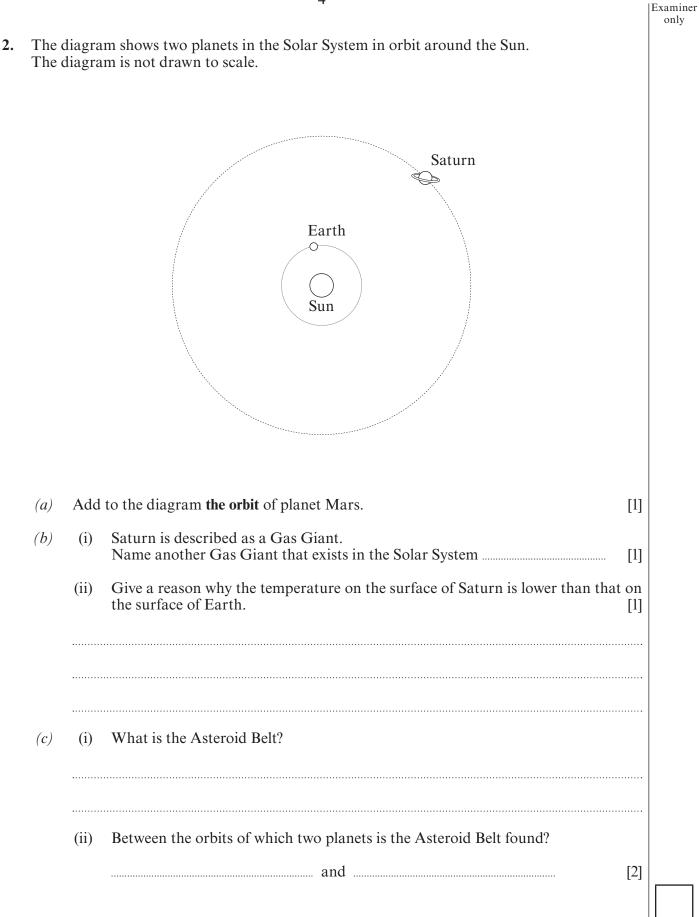

A list of equations is printed on page 2. In calculations you should show all your working.

EQUATIONS

power	=	voltage × current
energy transfer	=	power × time
units used (kWh)	=	power (kW) × time (h)
cost	=	units used \times cost per unit
% efficiency	=	$\frac{\text{useful energy transfer}}{\text{total energy input}} \times 100$
wave speed	=	wavelength \times frequency
speed	=	distance time

Answer all questions.

1. The diagram shows the path of a ray of light through a glass block.



Complete the following sentences by underlining the correct word or phrase contained in the brackets. [4]

- (a) At **B** the light ray is [refracted / reflected / totally internally reflected] because angle i_1 is [less than / equal to / more than] the critical angle for glass.
- (b) At C the light ray is [refracted / reflected / totally internally reflected] because angle i_2 is [less than / equal to / more than] the critical angle for glass.

4

 $\begin{array}{c} 02.37 \\ 010\,003 \end{array}$

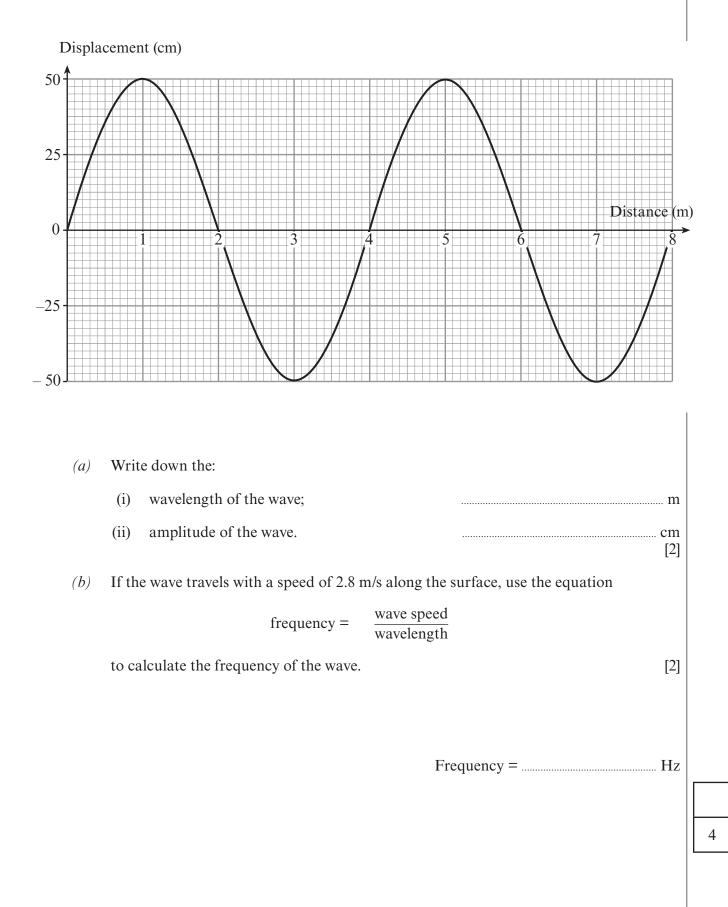
(0237-01)

3. Heat is lost from a room through the ceiling and the roof space.

Turn over.

Examiner only 6

Examiner only

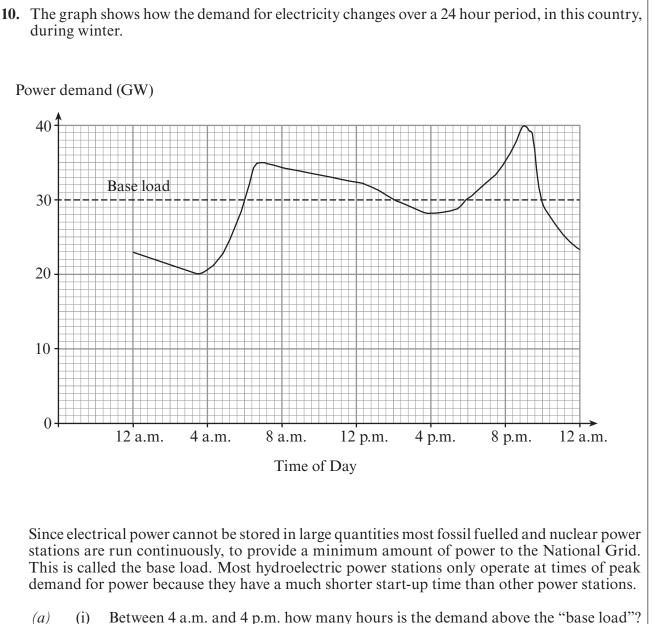

3

(i)	Why	is electrical power transmitted at high voltages?
(ii)	State	e how a voltage of 230 V is obtained from the National Grid to use in the home.
(iii)	Wha	t is the advantage of connecting all power stations to the National Grid?
(a)		e two ways that the gases emitted from coal fired power stations pollute the ronment.
(<i>a</i>)	envi	
(a) (b)	envi 1.	
	envi 1. 2.	ronment.

- $100 \, J$ Kinetic energy of hot air 876 J Heat energy Wasted energy $1000 \, J$ Electrical energy Calculate the amount of energy wasted in each second. (a)[1] Use the equation *(b)* $\frac{\text{useful energy transfer}}{\text{total energy input}} \times 100$ % efficiency = to calculate the efficiency of the hairdryer in transferring electrical energy to useful energy in blow drying the hair. [3] Efficiency = %
- The diagram gives information about the energy transfers in a hairdryer in each second. 6.

0237 010007

7. The diagram represents a water wave on the ocean.


			9	Examiner only
8.	• A householder left home for a 14 day holiday. To deter burglars she left 5 filament lamps timed to come on for 5 hours a night. Each lamp had a power of 100 W.			
	(a)	Calc	culate the total electrical power of the lamps in kW. [1]	
			Power = kW	
	<i>(b)</i>	Usir	ng the equations	
			number of units $(kWh) = power (kW) \times time (h)$	
			$cost = units used \times cost per unit$	
		(i)	calculate the number of units (kWh) of electricity used during the 14-day holiday. [2]	
			Number of units (kWh) =	
		(ii)	calculate the cost to the householder if electricity costs 8p per unit. [1]	
				0237 010009
			Cost = p	
	(c)	A 20	W low energy lamp produces the same amount of light as a 100 W filament lamp.	
		(i)	Give a reason why the cost would be less if the filament lamps were replaced by 20 W lamps. [1]	
		(ii)	Calculate the saving to the householder if 20W lamps were used instead of the filament lamps. [2]	
			Saving = p	

9. Microwaves are a type of electromagnetic radiation. They are reflected from metals but can pass through glass, pottery and some plastics.

Most food cooked in a microwave oven has a high water content, which readily absorbs the microwave energy producing a rapid rise in temperature. This results in the food being cooked quickly.

(a) (i) Explain why the choice of container for the food is important in microwave cookery. [2]
(ii) Give a reason why microwave ovens cook food quicker than a conventional oven. [1]
(b) X-rays and gamma rays are other types of electromagnetic radiation. State two ways in which they differ from microwave radiation. [2]

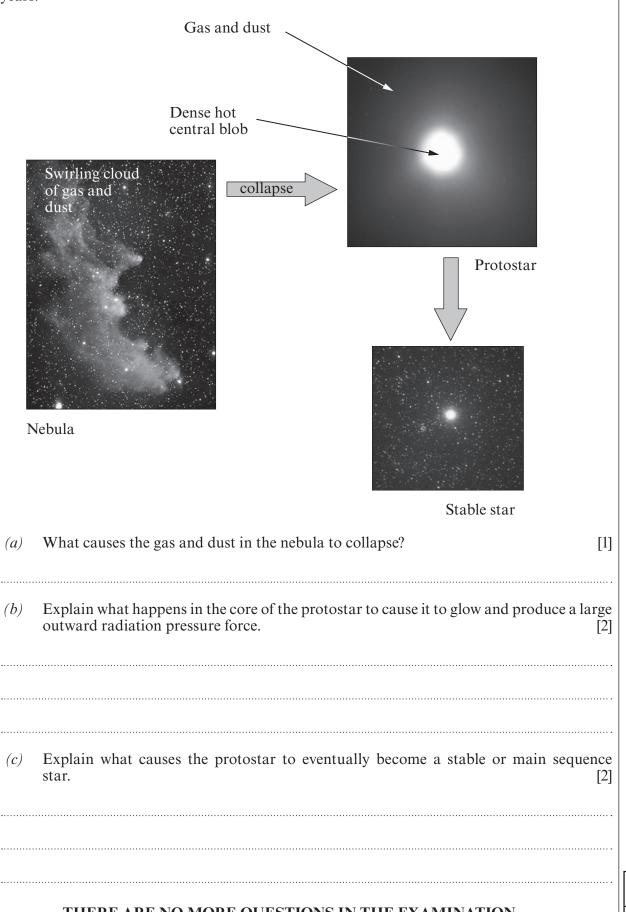
BLANK PAGE

[1]

Number of hours =

(ii) How much reserve generating capacity must the electrical industry have available, to meet the peak demand for the 24 hour period shown by the graph? [1]

Reserve capacity = GW


(b) Give a reason why electrical power is offered at low cost between 12 a.m. and 5 a.m. [1]

(c) Why does a hydroelectric power station have a much shorter start-up time than fossil fuelled power stations? [1]
(d) Suggest how the electrical industry deals with the reduced demand for power during the summer months. [1]

5

TURN OVER FOR QUESTION 11.

1411. The diagram shows the stages in the birth of a star which takes place over many millions of years.

THERE ARE NO MORE QUESTIONS IN THE EXAMINATION.

Examiner only