Physics Revision Notes – Electromagnetism

- White light can be split into the visible spectrum using a prism (violet light bends the most). 1
- The electromagnetic spectrum contains the following types of waves: 2
 - **Radio Waves** \rightarrow Long wave radio waves have a wavelength of about 1-2km, and can travel long distances and down tunnels, as they are able to bend. \rightarrow Medium wave radio waves have a wavelength of about 300m, and the reception is fuzzy due to limited transmitters. \rightarrow Short wave radio waves have a wavelength of about 200m and cannot go through hills - they only have one line of sight. \rightarrow FM radio and TV (VHF or UHF) are shorter than short waves. \rightarrow Used by mobile phones and satellites. Microwaves \rightarrow When used for cooking, microwaves excite water and salt molecules to create heat. This is a danger to living organisms. Infra Red \rightarrow Radiant heat emitted from hot objects. \rightarrow Used to detect heat sources (e.g. night vision), and for TV controls. Visible light \rightarrow Used in fibre optics (e.g. endoscopes and telephone wires). **Ultra Violet** \rightarrow Penetrating (in sunlight) – can damage internal organs and/or cause skin cancer. Darker skin lets fewer waves penetrate.
 - \rightarrow Used to take pictures inside the body (in medicine). **X-Rays**
 - - \rightarrow Used to destroy cancer cells by overlapping two beams over the cancer.
 - \rightarrow Can cause mutations in sex cells, or tumours in body cells.
 - \rightarrow Used to treat cancer like x-rays (radiotherapy). **Gamma Rays**
 - \rightarrow Used as tracers (e.g. in the blood).
- 3. How to wire a plug safely the safety features are the fuse and the earth wire.
- 4. Choosing the correct **fuse** for an appliance (e.g. a 13A fuse would be used for an 11A appliance).
- A circuit breaker cuts off the power if the current gets too high, by way of an electromagnet if 5. the current is too high, it will have a large enough force to attract the catch and break the circuit.
- 6. Alternating current (AC) is when the live wire alternates between a positive and negative voltage, while the neutral wire is close to 0V (e.g. mains electricity - 230V @ 50Hz).
- 7. **Direct current (DC)** is when the supply is constant and in one direction only (e.g. from a battery).
- Electromagnets are made by wrapping a wire around in a coil (a solenoid). 8.
- 9 The strength of an electromagnet is increased by \rightarrow Increasing the number of turns in the coil.

 - \rightarrow Increasing the **current** through the coil.
 - \rightarrow Using an **iron core**.
- 10. **DC magnets** need less current and the magnetism lasts longer after the power is removed, whereas AC magnets need more current and the magnetism is lost immediately after the power is removed.
- 11. Uses of electromagnets:
 - Scrapyard magnet. •
 - Circuit breaker.
 - Loudspeaker the direction of the current is continually changed, causing the magnet to move backwards and forwards; thus creating a longitudinal sound wave.
 - **Relay** a DC current powers an electromagnet which is able to pull two contacts together to • turn on a higher voltage AC circuit.
 - **Electric Bell** an electromagnet attracts the hammer, striking the bell and breaking the circuit. The hammer then springs back to start again. This is called a make-and-break circuit.
- 12. Electromagnetic induction is when a magnet move through a coil, or a coil moves through a magnetic field, to create an electric current.
- 13. The size of the induced current is increased by
- \rightarrow Increasing the **speed** of the movement.
- \rightarrow Increasing the **strength** of the magnet.
- \rightarrow Increasing the **number of turns** in the coil.
- 14. In a **DC motor**, the current flows through a coil in a magnetic field, producing a **moment**. A **split ring commutator** is used to reverse the current and thus keep the moment in the same direction.
- 15. The **size** of the moment is increased by
- \rightarrow Increasing the current.
- \rightarrow Increasing the magnetic field strength.
- 16. Transformers are used to increase or decrease the voltage in a wire, by altering the number of turns in each coil:
 - $\frac{\text{Number of primary turns}}{\text{Number of secondary turns}} = \frac{\text{Primary voltage}}{\text{Secondary voltage}} \frac{N_p}{N_s} = \frac{V_p}{V_s}$