

GENERAL CERTIFICATE OF SECONDARY EDUCATION GATEWAY SCIENCE PHYSICS B

Unit 1 Modules P1 P2 P3 FOUNDATION TIER

MONDAY 18 JUNE 2007

Calculators may be used. Additional materials: Pencil

Ruler (cm/mm)

Candidate

B651/01

Candidate
Vame

Centre

Number			Number		1

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre Number and Candidate Number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- A list of physics equations is printed on page two.

FOR EXAMINER'S USE				
Section	Mark			
A	20			
В	20			
С	20			
TOTAL	60			

This document consists of 19 printed pages and 1 blank page.

SP (NF/CGW) T30641/5

© OCR 2007 [M/103/4266]

OCR is an exempt Charity

[Turn over

EQUATIONS

$$efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$$

wave speed = frequency × wavelength

power = voltage × current

energy (kilowatt hours) = power (kW) \times time (h)

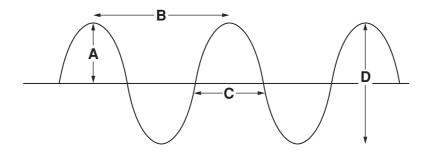
$$speed = \frac{distance}{time \ taken}$$

$$acceleration = \frac{change \ in \ speed}{time \ taken}$$

force = $mass \times acceleration$

work done = force × distance

$$power = \frac{work\ done}{time}$$


Answer all the questions.

Section A – Module P1

This	s question is about insulating a h	ouse.
(a)	Anya reduces the energy loss f	rom her house.
	She uses different methods to	do this.
	Draw a straight line from each	method to the place where it is used.
	method	place where it is used
	double glazing	around doors and windows
	draught proofing	behind radiators
	fibreglass insulation	windows
	silver foil	loft
(b)	Anya pays £300 to insulate her	loft.
	Her energy bills are £100 less	each year because of the loft insulation.
	Calculate the payback time.	

[Total: 5]

- 2 This question is about waves.
 - (a) Look at the diagram of a wave.

/i\	Which	lattar	chowe	tha	amn	lituda	2
\ I I	VVIIIGII	ICITOI	SHUWS	шс	alliv	IIILUUG	

Choose from: A B C D

.....[1]

(ii) Which letter shows the wavelength?

Choose from: A B C D

.....[1]

(b) The sound from Ewan's CD travels at 330 m/s in air.

The frequency of a sound is 256 Hz.

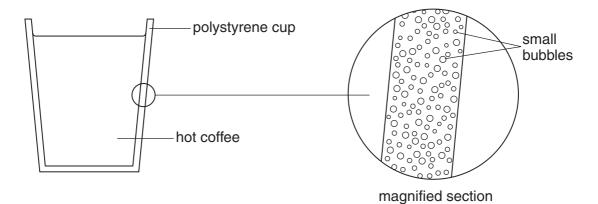
The frequency of the sound increases to 412 Hz.

What happens to the wavelength?

Choose from:

decreases	increases	stays the same	
			[1]

		5	
(c)	Loo	k at the list of waves from the electromagnetic spectrum.	
		infrared	
		microwave	
		radio	
		ultraviolet	
		visible light	
	(i)	Which wave is used for mobile phone calls?	
		Choose from the list.	
			[1]
	(ii)	Which wave is used by burglar alarm sensors?	
		Choose from the list.	
			[1]
(d)	Chi	ldren often use mobile phones to talk to their friends.	
	Son	ne people are concerned about children using mobile phones.	
	Sug	gest reasons why.	


[Total: 7]

This	s que	estion is about the energy absorbed by different materials.
(a)	Ber	n investigates how metals heat up.
	He	notices that different materials heat up and cool down at different rates.
	He	measures the energy needed to increase the temperature of a block of steel by 1 °C.
	(i)	What does he use to measure the temperature?
		[1]
	(ii)	Suggest another piece of equipment that he needs for the investigation.
		[1]
(b)		finds that 500 units of energy are needed to increase the temperature of the block of steel $^{\circ}\text{C}.$
	Wri	te down the name of the unit of energy.
		[1]
		[Total: 3]

4 This question is about energy transfer.

Look at the diagram of a coffee cup.

It shows a section of the cup wall.

The cup wall helps to keep the coffee hot.

Explain how.		
	 	 [3]
		[Total: 3]

5 Diana uses a CD player to listen to her favourite music.

The CD player contains a laser.

Use words from the list to complete the sentences below.

alpha	analogue	digital	electrical	intense	wide		
Electronic signals can be either analogue or							
A laser produces an beam of light, which is reflected from							
the surface of	of the CD.						

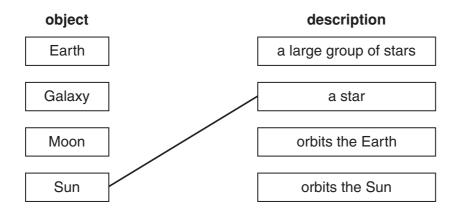
[2]

[Total: 2]

Section B – Module P2

Pov	ver s	tations pro	duce electrici	ty.			
(a)	A n	uclear pow	er station get	s its energy fro	om nuclear re	actions.	
	Oth	er power s	tations can g	et their energy	from burning	fuels.	
	Cor	mplete the	sentences.				
	(i)	A fossil f	uel power sta	tion can get its	energy from	burning	
		Choose fr	rom:				
			coal	manure	straw	wood	[1]
	(ii)	A renewa	ible power st	ation can get it	s energy from	n burning	
		Choose fi	rom:				
			coal	gas	oil	straw	[1]
(b)	Not	all the ene	ergy in the fue	el is transferred	into electrica	al energy.	
	Loc	k at the pic	cture.				
	Sor	ne of this e	energy is was	ted.			
	Sug	gest how t	his energy is	wasted in the	power station		
	••••						[1]

6


(c)	A ge	enerator is part of the power station.		
	The	generator produces electricity.		
	A ba	attery produces DC electricity.		
	Wha	at type of electricity does the generator produce?		
				[1]
(d)	This	electricity is sent through a transformer and onto the National Grid.		
	(i)	What is the job of the transformer ?		
				[1]
	(ii)	What does the National Grid do?		
				[1]
			[Total	: 6]

- 7 This question is about Earth and space.
 - (a) The Universe is made up of many objects.

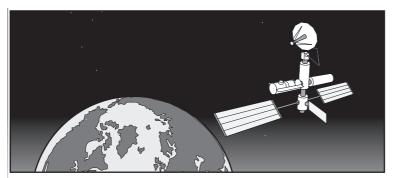
The Sun is a star.

Draw a straight line to match each object to its description.

One has been done for you.

(b) Most stars are far away from Earth.

We can see stars even when they are far away.


Give two reasons why.

reason one	
reason two	
TOUGOTT (WO	
	[0]
	 [∠]

[Total: 4]

[2]

8 (a) Artificial satellites are used for sending mobile phone signals.

not to scale

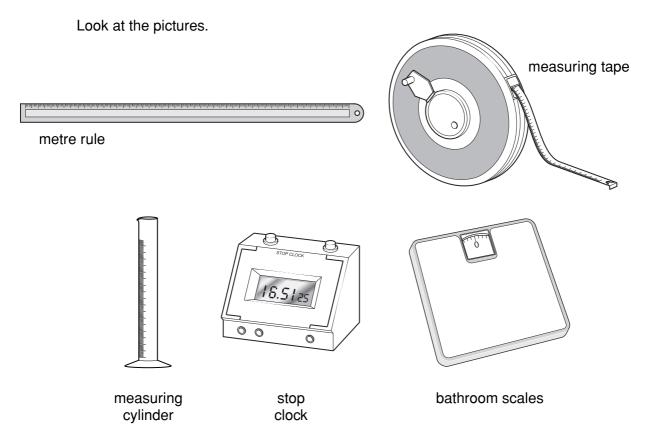
Name two other different uses of artificial satellites.

	first	use	
		ond use	
(b)	Sola	ar flares from the Sun can interfere with satellite signals.	
	(i)	What is a solar flare?	
			[1]
	(ii)	How does this interfere with satellite signals?	
			[1]
		[Tota	l: 4]

12 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

		13
9	(a)	Asteroids orbit the Sun. They are made of hard rock.
		In the past, asteroids have hit the Earth.
		One asteroid may have led to the extinction of dinosaurs.
		Suggest how this asteroid may have affected the Earth.
		[2
	(b)	Comets orbit the Sun.
		The tail of a comet is a trail of debris.
		Look at the picture.


© iStockphoto.com / Michael Puerzer

(1)	what are comets made of?	
		[1]
(ii)	What shape is a comet's orbit?	
		[1]
(iii)	What happens to the speed of comets in orbit?	
		[2]
	[[Total: 6]

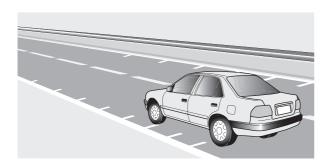
14

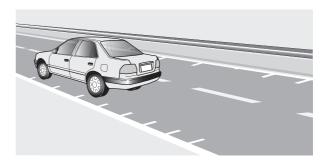
Section C - Module P3

- 10 This question is about speed.
 - (a) Oliver wants to measure the speed of his friends in a race.

Which two pieces of equipment will he need?

Choose from:

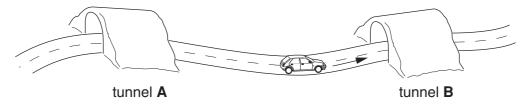

metre rule	measurin	g tape	measuring cylinder	
	stop clock	bathro	om scales	
		and		[2]


(b) There is a speed camera outside Oliver's school.

There are lines marked on the road.

A car goes past very quickly.

The camera flashes twice as the car crosses the lines.


Explain how the pictures can be used to check speeds.	
	[3

[Total: 5]

11 Cars travel along a road.

The road passes through two tunnels.

Look at the diagram.

not to scale

The tunnels are both the **same length**.

The table shows the time taken for different cars to travel through the tunnels.

car	time to go through tunnel A in seconds	time to go through tunnel B in seconds
Fiat	5.0	5.0
Ford	7.2	7.9
Rover	4.8	4.6
Skoda	6.0	6.1

(a) (i) Which car is travelling at a steady speed?

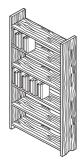
Choose from:

(ii)

	Fiat	Ford	Rover	Skoda	
					[1]
Which car	r is speeding	ı up?			
Choose fr	om:				
Choose fr	om:				

Flat	Fora	Rover	Skoda	
 				[1]

(b) The stopping distance of a car is made up of two distances.


The	ese are the thinking distance and the braking distance.
(i)	What does braking distance mean?
	[2]
(ii)	Write down one factor that can increase the braking distance.
()	[1]
(iii)	The car travels at 15 m/s.
(111)	
	The thinking distance is 10 m and the braking distance is 15 m at this speed.
	Calculate the stopping distance.
	m [1]
	[Total: 6]

12 This question is about types of energy.

Look at the pictures.

car travelling along flat road

books on shelf

aeroplane in flight

stationary ball on pitch

Some of the objects in the pictures have **kinetic energy**, some have **gravitational potential energy** and some have **both**.

(a)	Which object has both gravitational potential energy and kinetic energy?	
	Choose from the pictures.	
		[1]

(b) Which object has only gravitational potential energy?

Choose from the pictures.

[Total: 2]

13	(a)	New cars have a lot of active safety features.
		One active safety feature is the seat belt.
		Seat belts can reduce injuries in a crash.
		Explain how.
		[2]
	(b)	After a crash seat belts have to be replaced.
		Explain why.
		[1]
	(c)	Write down another active safety feature of cars.
		[1]
		[Total: 4]

14 Emma goes shopping.

© OCR

She pushes her shopping trolley to the car.

She uses a steady force of 85 newtons to move the trolley.

The trolley moves 50 m.

alculate the work done in pushing the trolley 50 m.	
	•••
	•••
J [[3]
[Total:	3]

END OF QUESTION PAPER

Copyright Acknowledgements:

Q. 9b © iStockphoto.com / Michael Puerzer

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.