Physics A

Twenty First Century Science Suite

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Twenty First Century Science - Physics A (J635)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
Guidance for Examiners 1
A331/01 Modules P1, P2, P3 Foundation Tier 3
A331/02 Modules P1, P2, P3 Higher Tier 8
A332/01 Modules P4, P5, P6 Foundation Tier 14
A332/02 Modules P4, P5, P6 Higher Tier 19
Grade Thresholds 29

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, eg mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
/ = alternative and acceptable answers for the same marking point
(1) = separates marking points
not/reject = answers which are not worthy of credit
ignore = statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
Eg mark scheme shows 'work done in lifting/(change in) gravitational potential energy' (1) work done $=0$ marks work done lifting = 1 mark change in potential energy $=0$ marks gravitational potential energy $=1$ mark
5. Annotations:

The following annotations are available on SCORIS.
$\checkmark \quad=$ correct response
x $=$ incorrect response
bod = benefit of the doubt
nbod $=$ benefit of the doubt not given
ECF = error carried forward
$\wedge \quad=$ information omitted
I = ignore
$\mathrm{R}=$ reject
6. If a candidate alters his/her response, examiners should accept the alteration.
7. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.

For a one mark question, where ticks in boxes 3 and 4 are required for the mark:

Put ticks (\checkmark) in the two correct boxes.

This would be worth 0 marks.

Put ticks (\checkmark) in the two correct boxes.

This would be worth one mark.

Put ticks (\checkmark) in the two correct boxes.

This would be worth one mark.
8. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, eg one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
9. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, eg shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.

Eg If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	NR

A331/01 Modules P1, P2, P3 Foundation Tier

Question			Expected Answers				Marks	Rationale
1	a						[1]	accept any clear and unambiguous response
			A	C	B	(1)		
	b						[1]	accept any clear and unambiguous response
			B	C	A	(1)		
							[2]	

$\mathbf{2}$		star (1) galaxy (1) cloud of gas (1)	[3]	accept any clear and unambiguous response.	
			Total	$[3]$	

$\mathbf{3}$	\mathbf{a}	\mathbf{i}	A (1)	$[1]$	
		ii	$\mathrm{B}(1)$	$[1]$	
	$\mathbf{~} \mathbf{\text { iii }}$	$\mathrm{D}(1)$	$[1]$	accept B	
	\mathbf{b}		results may be unreliable if not repeated / owtte (1)	$[1]$	mark is for improved reliability by repetition
			Total	$[4]$	

Question		Expected Answers	Marks	Rationale
4	a	$\begin{aligned} & \mathrm{B}(1) \\ & \mathrm{D}(1) \\ & \mathrm{E}(1) \\ & \hline \end{aligned}$	[3]	answers can be in any order. accept any clear and unambiguous response
	b	The rock processes seen ... \square	[1]	accept any clear and unambiguous response.
		Total	[4]	

Question		Expected Answers		Marks	
$\mathbf{5}$	b	i	arrow pointing right	(1)	$[1]$
		ii	accept any clear and unambiguous response		
	c (1)		ozone (1)	$[1]$	allow IR
				$[1]$	accept any clear and unambiguous response

$\mathbf{6}$	\mathbf{a}		less trees means less (photosynthesis) absorbing $\mathrm{CO}_{2}(1)$ burning trees release $\mathrm{CO}_{2}(1)$ CO	[3]	allow carbon for CO_{2}
	\mathbf{b}	any two suggestions that will result in less CO_{2} emitted eg use of renewable energy sources; burn less fossil fuels; travel less; domestic level changes; any carbon sequestration idea such as plant more forests;	[2] do not allow burning fossil fuels produces CO_{2}	allow any specific examples eg use public transport or buses, energy efficient bulbs, use heating less allow recycling. do not allow suggestions involving animals	
	Total	[5]			

Question			Expected Answers	Marks	Rationale
7	a	i	A (1)	[1]	accept any clear and unambiguous response
		ii	C (1)	[1]	accept any clear and unambiguous response
		iii	C (1)	[1]	accept any clear and unambiguous response
	b	i	radiographer (1)	[1]	accept any clear and unambiguous response
		ii	any three from: benefit: cures cancer; kills cancer cells; risk: side effects; kills other cells; causes (another) cancer;	[3]	maximum of two benefits can be counted maximum of two risks can be counted accept stop spreading / slows growth (of cancer) two separate side effects can be counted as two risks
	c			[4]	
			Total	[11]	

| $\mathbf{8}$ | | [4]
 furnace/boiler (1)
 turbine (1)
 generator/dynamo (1)
 in correct order
 (furnace - turbine - generator) (1) | oner for each label in any box
 fourth mark if for the correct order
 allow description of process in place of furnace eg burning
 (coal), combustion, boiling, steam generation etc |
| :--- | :--- | :--- | :---: | :--- |
| | | Total | |

A331/02 Modules P1, P2, P3 Higher Tier

Question		Expected Answers	Marks	Additional Guidance
1	a	$\begin{aligned} & \mathrm{B}(1) \\ & \mathrm{D}(1) \\ & \mathrm{E}(1) \end{aligned}$	[3]	any order
	b	The rock processes seen today \square	[1]	
		Total	[4]	

$\mathbf{2}$	\mathbf{a}		4000
			5000
			14000
			100
	\mathbf{b}	\mathbf{i}	E (1)
		ii	A
			C

$[4$	
	$[1]$
Total	$[1]$

[4]	all five correct = 4 marks four correct = 3 marks three correct = 2 marks two correct = 1 mark one correct = 0 marks
$[1]$	
$[1]$	both required for mark any order
$[6]$	

\(\left.$$
\begin{array}{|c|c|c|l|l|l|}\hline \mathbf{4} & \mathbf{a} & & \begin{array}{l}\text { less trees means less (photosynthesis) } \\
\text { absorbing } \mathrm{CO}_{2}(1) \\
\text { burning trees release } \mathrm{CO}_{2}(1) \\
\mathrm{CO}_{2} \text { levels increase (1) }\end{array} & \text { [3] } & \text { allow carbon for } \mathrm{CO}_{2} \\
\hline & \mathbf{b} & \begin{array}{l}\text { any two suggestions that will result in less } \mathrm{CO}_{2} \\
\text { emitted } \\
\text { eg } \\
\text { use of renewable energy sources; } \\
\text { burn less fossil fuels; } \\
\text { travel less; } \\
\text { domestic level changes; } \\
\text { any carbon sequestration idea such as plant } \\
\text { more forests; }\end{array} & \begin{array}{l}\text { [2] } \\
\text { must be explicit }\end{array}
$$

\hline allow any specific examples eg use public transport or buses,

energy efficient bulbs, use heating less

allow recycling.

do not allow suggestions involving animals\end{array}\right]\)| Total |
| :--- |

| Question | | Expected Answers | Marks | | |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | a | i | ozone (1) | | |

| 7 | | [4]
 furnace/boiler (1)
 turbine (1)
 generator/dynamo (1)
 in correct order
 (furnace - turbine - generator) (1) | one mark for each label in any box
 fourth mark is for the correct order
 allow description of process in place of furnace eg burning
 (coal), combustion, boiling, steam generation etc | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Total | $[4]$ | |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 8 \& a \& i \& D (1) \& [1] \& \\
\hline \& \& ii \& C (1) \& [1] \& \\
\hline \& \& iii \& \[
\begin{aligned}
\& \mathrm{B} \\
\& \mathrm{D}
\end{aligned}
\] \& [1] \& both required for mark either order \\
\hline \& b \& \& 1 (Bq) (1) \& [1] \& \\
\hline \& C \& \& \begin{tabular}{l}
Type of radiation. \(\square\)
\\
Amount of radioactive source. \(\square\) \\
Length of time exposed ... \(\square\)
\end{tabular} \& [2] \& three correct = 2 marks two correct = 1 mark one correct \(=0\) marks \\
\hline \& d \& \& radiographer (1) \& [1] \& \\
\hline \& e \& \& \begin{tabular}{l}
\(\square\) \\
risks and benefits. \(\square\) (1)

\end{tabular} \& [1] \&

\hline
\end{tabular}

Question		Expected Answers	Marks	Additional Guidance
8	f	irradiating surgical instruments C \ldots chemicals inside the body C \ldots cancer on the surface of the skin A or B	[2]	all correct $=2$ marks two correct = 1 mark one or zero correct = 0 marks accept gamma/ γ for C accept alpha/ α for A accept beta/ β for B
		Total	[10]	

A332/01 Modules P4, P5, P6 Foundation Tier

Question			Expected Answers	Marks	Additional Guidance
1	a	i	9.6 (km) (1)	[1]	
		ii	2.4 (km) (1)	[1]	
	b	i	...the lorry is travelling fastest. ...the lorry is stationary.	[2]	
		ii	any line starting at X between horizontal and vertical with a negative gradient (1)	[1]	no credit for any line that goes backwards in time or vertical or horizontal does not have to reach axis
	c		A (motorway) - fast/fastest / least speed changes/ (nearly) constant speed (1) C (town) - slow/slowest / stops (and starts) (1) D (main road) - middle speed / some speed changes / not a constant speed (1)	[3]	allow A- $70 \mathrm{mph}, \mathbf{C}-30 \mathrm{mph}, \mathrm{D}-50-60 \mathrm{mph}$ speed needs to be clearly between speeds referred to for A and C. eg fairly fast/quite fast do not allow stops
			Total	[8]	

Question			Expected Answers	Marks	Additional Guidance
2	a		force (1) work (1) kinetic energy (1)	[3]	
	b	i	8 (MJ) (1)	[1]	
		ii	any two from: space craft slows down; because of air resistance/parachutes/friction; energy lost as heat;	[2]	
			Total	[6]	

| Question | | Expected Answers | Marks | Additional Guidance |
| :--- | :---: | :--- | :--- | :---: | :---: |
| $\mathbf{4}$ | \mathbf{a} | voltage (1)
 a current flows (1) | [2] | |
| | \mathbf{b} | any two from:
 as the magnet rotates;
 field lines cut (the coil/wire);
 changing magnetic field;
 current/voltage is produced/induced; | allow magnet moves | |
| | \mathbf{c} | direct (1)
 alternating (1)
 $230(1)$ | [3] | |
| | | Total | $[7]$ | |

Question		Expected Answers	Marks	Additional Guidance
6	a	analogue signals can take all possible values / are continuously varying (1) digital signals only have 0 s and $1 \mathrm{~s} / \mathrm{on}$ and off / two values (1)	[2]	these points may be shown on the diagrams - however if diagrams and writing contradict then lose mark(s) the candidate must have indicated the type of signal on at least one diagram to gain marks from the diagrams ignore references to quality of signal, noise, decoding etc allow on diagram of digital signal small indications of noise ignore small errors in drawings eg backward sloping curves
	b	amplified (1) quality (1) digital (1)	[3]	
		Total	[5]	

A332/02 Modules P4, P5, P6 Higher Tier

Question			Expected Answers	Marks	Additional Guidance
1	a		-10m/s north and 10m/s south (1)	[1]	both parts required any unambiguous correct indication is OK eg underlining etc
	b		A (motorway) - fast/fastest / least speed changes / (nearly) constant speed (1) C (town) - slow/slowest / stops (and starts) (1) D (main road) - middle speed / some speed changes / not a constant speed (1)	[3]	allow A- $70 \mathrm{mph}, \mathrm{C}-30 \mathrm{mph}$, D - 50-60 mph speed needs to be clearly between speeds referred to for A and C. eg fairly fast/quite fast do not allow stops
			Total	[4]	

Question		Expected Answers	Marks		
3			Vicky (1)	$[1]$	allow Vicky circled etc in diagram
			Total	$[1]$	

| 4 | (loss of) PE = (gain in) KE /
 weight \times height $=1 / 2 \mathrm{mv}^{2}(1)$
 $400 \times 20=1 / 240 \mathrm{v}^{2}$ or $\mathrm{v}^{2}=400 \times 20 \times 2 \div 40(1)$
 $v=20(\mathrm{~m} / \mathrm{s})(1) \quad$ Total | [3] | PE $=400 \times 20$ or 8000 and everything else wrong then 1 mark
 correct numerical answer gains full marks providing the answer
 does not come from incorrect physics |
| :---: | :---: | :---: | :---: | :--- |

Question			Expected Answers	Marks	Additional Guidance
6	a		Electric currents \ldots \ldots few charges free to move. Metallic conductors \ldots Insulators \ldots negative \ldots \ldots \ldots	[2]	all three correct $=2$ marks two or one correct $=1$ mark
	b	i	The smallest current is in circuit B The largest current is in circuit C	[1]	both required for mark
		ii	any two from: circuit C has the smallest resistance / circuit B has the largest resistance; both circuits have the same voltage; correct explanation of adding resistors in series and parallel;	[2]	note: circuit C has largest current and circuit B has the smallest current is not a marking point for first mark allow ecf eg if 6 b i has B then A allow B has the highest resistance / A has the lowest resistance if 6 b i has A then C allow A has the highest resistance / C has the lowest resistance BUT if 6 b i has C then A or B then the only mark available is the 'same voltage' mark watch out for the candidate who gives B then A for 6 b i and then writes 'in B the current is smaller because it has to travel through two resistors whereas in A it only goes through one resistor' this is zero because there is no explanation that the resistance of B is greater than the resistance of A ie mark is for resistance NOT resistors
	c	i	a current / flow of charge (1)	[1]	allow movement of charge allow idea of charges colliding

Question			Expected Answers	Marks	Additional Guidance
6	c	ii	as the temperature increases the resistance decreases (OWTTE) (1)	[1]	allow vice versa ie if temperature goes down then resistance goes up allow resistance increases as temperature increases, providing it is clearly stated that it is a p.t.c. (positive temperature coefficient) thermistor
	d		$\frac{500}{1000} \times 4 \times 8 p$	[1]	
	e		small (1)	[1]	
	f	i	3 (J) (1)	[1]	
		ii	electrons collide with the atoms/positive ions (1) causing (the atoms/ions) to vibrate (more) (resulting in an increase in temperature) (1)	[2]	do not allow positive electrons ignore collisions with other electrons
			Total	[12]	

Question			Expected Answers	Marks	Additional Guidance
8	a	1	analogue signals can take all possible values / are continuously varying (1) digital signals only have 0 s and $1 \mathrm{~s} / \mathrm{on}$ and off / two values (1)	[2]	these points may be shown on the diagrams - however if diagrams and writing contradict then lose mark(s) the candidate must have indicated the type of signal on at least one diagram to gain marks from the diagrams ignore references to quality of signal, noise, decoding etc allow on diagram of digital signal small indications of noise ignore small errors in drawings eg backward sloping curves
		ii	$\begin{aligned} & \text { intensity/quality (1) } \\ & \text { quality (1) } \\ & \text { digital and analogue (1) } \end{aligned}$	[3]	needs both digital and analogue and in correct order for this mark
		iii	reproduces the original sound	[1]	
	b		They all have the same speed. \square (1)	[1]	

Grade Thresholds

General Certificate of Secondary Education
GCSE Twenty First Century Physics A (J635)
January 2010 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A* *	A	B	C	D	E	F	G	U
A331/01	Raw	42				23	18	14	10	6	0
	UMS	34				30	25	20	15	10	0
A331/02	Raw	42	30	25	20	16	10	7			0
	UMS	50	45	40	35	30	25	20			0
A332/01	Raw	42				22	18	15	12	9	0
	UMS	34				30	25	20	15	10	0
A332/02	Raw	42	31	25	19	14	10	8			0
	UMS	50	45	40	35	30	25	20			0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A*	A	B	C	D	E	F	G	U
J635	300	270	240	210	180	150	120	90	60	0

The cumulative percentage of candidates awarded each grade was as follows:

	A*	A	B	C	D	E	F	G	\mathbf{U}	Total No. of Cands
$\mathbf{J 6 3 5}$	0.0	66.7	66.7	66.7	100.0	100.0	100.0	100.0	100.0	3

66 candidates were entered for aggregation this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

