GCSE

Physics A
 Twenty First Century Science

General Certificate of Secondary Education J635

Mark Schemes for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Twenty First Century Science - Physics A (J635)

MARK SCHEMES FOR THE UNITS

Content/Unit
Page
Guidance for Examiners 1
A331/01 Modules P1, P2, P3 Foundation Tier 2
A331/02 Modules P1, P2, P3 Higher Tier 8
A332/01 Modules P4, P5, P6 Foundation Tier 13
A332/02 Modules P4, P5, P6 Higher Tier 19
A333/01 Module P7 Foundation Tier 24
A333/02 Module P7 Higher Tier 31
Grade Thresholds 37

Guidance for Examiners

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Each separate marking point is indicated by a (1) at the end of that marking point.
4. Abbreviations, annotations and conventions used in the detailed Mark Scheme:

$$
\begin{aligned}
& \text { ORA = or reverse argument } \\
& \text { NOT = point that is not given credit } \\
& \text { AW/owtte = alternative wording/or words to that effect: allow any expression that is } \\
& \text { clearly equivalent } \\
& \text { / = Alternative and acceptable answers for the same marking point } \\
& \text { point = point must be present to gain the mark } \\
& \text { (description) = description which need not be present to gain the mark }
\end{aligned}
$$

E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' work done = 0 marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy = 1 mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. The list principle: if a list of responses greater than the number requested is given, you work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, i.e. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
7. Marking method for tick boxes:

If there is a set of boxes, some of which should be ticked and others left empty, then you need to judge the entire set of boxes.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out). For a two-mark question, the rationale would be:

All boxes are indicated scores 0 marks.
All boxes blank scores 0 marks.
All four boxes correct scores 2 marks.
Three boxes correct scores 1 mark.
Two boxes correct scores 1 mark.

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\mathbf{x}	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\mathbf{x}		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	NR

A331/01 Modules P1, P2, P3 Foundation Tier

A331/02 Modules P1, P2, P3 Higher Tier

Question			Expected Answers		Marks	Rationale
3	a		$\begin{aligned} & \text { P: gamma (rays) } / \gamma \\ & \text { Q: X (rays) } \\ & \text { R: visible / light } \\ & \text { S: microwave(s) } \end{aligned}$		2	all four correct for [2] any three correct for [1]
	b	i	Alex Beth Carys Derek	(1) (1)	2	correct pattern for [2] one mistake for [1] a mistake is: - a tick in the wrong box - a missing tick - an extra tick
	b	ii	Alex Beth Carys Derek	(1) (1)	2	correct pattern for [2] one mistake for [1] a mistake is: - a tick in the wrong box - a missing tick - an extra tick
	b	iii	Alex Beth Carys Derek	(1) (1)	2	correct pattern for [2] one mistake for [1] a mistake is: - a tick in the wrong box - a missing tick - an extra tick
			Total		8	

A332/01 Modules P4, P5, P6 Foundation Tier

Question		Expected Answers	Marks	Rationale
$\mathbf{3}$	\mathbf{a}	the same as (1) greater than (1)	2	must be in correct order
	\mathbf{b}	Q	1	look for indication on the diagram if the answer line is blank
	\mathbf{c}	0.15 W	1	accept any unambiguous identification
		Total	$\mathbf{4}$	

Question			Expected Answers	Marks	Rationale
5	a	i	electrons	1	accept any unambiguous identification
		ii	negative	1	accept any unambiguous identification
	b			3	three correct responses and 3 blanks (3) two correct responses and at least 3 blanks (2) one correct response and at least 3 blanks (1) everything else scores (0)
			Total	5	

Question			Expected Answers			Marks	Rationale
6	a		the magnet is spun round faster number of coils is increased	$\begin{aligned} & \checkmark \\ & \hline \checkmark \end{aligned}$	(1) (1)	2	two correct responses and 2 blanks (2) one correct responses and at least 2 blanks (1) everything else scores (0)
	b	i	$\begin{aligned} & \text { copper (1) } \\ & \text { iron (1) } \end{aligned}$			2	must be in correct order.
		ii				1	any left-hand box with more than one line coming from it counts as a mistake
			Total			5	

Question		Expected Answers				$\begin{gathered} \hline \text { Marks } \\ \hline 1 \end{gathered}$	Rationale accept any unambiguous correct response Ignore other boxes
8	a	gamm	$X-$ rays UV	IR	radio		
	b	(D) ${ }^{(1)}$	A E B			3	C before A (1) A before E (1) E before B (1) remember Cats Always Eat Birds
	c	dens				1	accept any unambiguous identification
		Total				5	

A332/02 Modules P4, P5, P6 Higher Tier

Question		Expected Answers	Marks		
$\mathbf{2}$	\mathbf{a}	the same as (1) greater than (1)	2	Rationale	
	\mathbf{b}		Q	1	look for indication on diagram if answer line is empty
	c	0.15 W	1		
		Total	$\mathbf{4}$		

Question			Expected Answers		Marks	Rationale
4	a		stopped at traffic lights (1) making an emergency stop G moving at the fastest speed (1) (1) (1)		3	remember 式oves $\underline{\text { Glide }}$ Beautifully (or Dirty Great $\underline{B} u s . .$.
	b	i	$\frac{800}{5}$		1	
		i	the friction from the driver's seat	$\checkmark \text { (1) }$	1	no extra ticks allowed
			Total		5	

| Question | | Expected Answers | Marks | Rationale |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | \mathbf{a} | | lorrect response for (2)
 one mistake for (1)
 two or more mistakes for (0) | |

| Question | | Expected Answers | Marks | Rationale |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{8}$ | \mathbf{a} | | 2 | top 2 left-hand boxes correct (red lines on template) (1) |

A333/01 Module P7 Foundation Tier

| Question | | Expected Answers | Marks | Rationale |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | \mathbf{e} | \mathbf{i} | any two from:
 damages/kills living cells
 causes cancers
 causes mutations
 produces ions (in cells)/breaks apart molecules
 ions disrupt/take part in chemical reactions (in cell) | ignore 'harms cells' |
| | ii | benefit - may cure cancer/cancer is likely to
 kill/cancer high risk/extends life (1)
 risk - may cause other damage/side effects
 (1)
 comparison of benefits and risks e.g. benefits
 outweigh risk (1) | 3 | accept 'kills cancer cells is a benefit' |
| accept an example of damage | | | | |

Question			Expected Answers	Marks	Rationale
2	a		\square focus \square lens image	3	all correct (3) two or three correct (2) one correct (1)
	b	i	$\begin{aligned} & \mathrm{C}(1) \\ & \text { greatest/most curved (1) } \end{aligned}$	2	allow thickest/fattest/shortest focal length/ bigger width
		ii	$\begin{aligned} & C(0) \\ & \text { most powerful/most curved (1) } \end{aligned}$	1	this mark is for explaining the reason
	c	i	straight lines continued to mirror (1) lines reflect off mirror to the focal point (1)	2	
		ii	idea of collecting light; very little light; from very faint/distant objects;	2	maximum 2 allow make image brighter/sharper/clearer
			Total	10	

| Question | | Expected Answers | Marks | Rationale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | a | ine rising to moon on both sides (1) | | |
| arrow from East to West (1) | | | | |

Question			Expected Answers	Marks	Rationale
4	a		any one from: Major radio observatories: Socorro, New Mexico, USA Jodrell Bank, UK Arecibo, Puerto Rico Parkes, New South Wales, Australia Major optical observatories: Mauna Kea, Hawaii Roque de los Muchachos, La Palma Observatory in Canary Islands Paranal Observatory, Chile Kitt Peak, USA Observatorio Nacional de Llano del Hato, Venezuela	1	allow name or location allow other examples allow Hawaii and Canaries not allow Chile, Israel unless more specific locations given
	b	i	Pierre (1) Nanette (1)	2	
		ii	Kurt	1	
	c		advantage (1): avoids atmospheric distortion/refraction/absorption/twinkle different parts of spectrum available disadvantage (1): cost of putting in space cost/difficulty of maintenance/repair uncertainty of space programme	2	allow idea of fewer things in the way not allow vague cost comments eg it's expensive. Needs to be qualified e.g. Repair is more expensive,
	d		shared cost/pooling of expertise/knowledge	1	
			Total	7	

Question			Expected Answers	Marks	Rationale
5	a		gravity	1	do not accept 'g force'
	b	i	any two from: pressure increases; particles move faster/ have more kinetic energy; more frequent/energetic collisions; particles have increased momentum; increased forces during collisions;	2	do not accept 'moves more' or 'vibrates' or just 'more energy' allow collisions with 'edge' or 'boundary' accept 'more collisions'
		ii	-270	1	
	c	i	name of particle charge on particle proton neutron nositive none	1	both required do not accept 'neuron' or 'nucleon'
	C	ii	electrical/electrostatic/electromagnetic (repulsion)	1	accept 'repulsion of charges' or 'static' do not accept 'magnetic' repulsion is insufficient on its own

Question			Expected Answers	Marks	Rationale
5	d	i	Hydrogen \rightarrow Helium	2	per correct answer (1) allow H and He (symbols must be correct) ignore any balancing/additional numbers
	ii		```top box: Core (1) Energy produced/fusion takes place (1) middle box: either convection zone (1) energy transferred (outwards) by convection currents (1) or radiative zone (1) energy transferred (outwards) as radiation/light/photons (1) bottom box: either Photosphere (1) Light/energy radiated into space/energy transferred to light (1) or convection zone (1) Energy transferred (outwards) by convection currents (1)```	6	do not accept 'fission' not energy built up or energy increasing accept 'convective' or 'convectional' zone requires idea of convection currents or cells accept 'emitted' or idea of energy leaving star. accept 'convective' or 'convectional' zone requires idea of convection currents or cells
			Total	14	

A333/02 Module P7 Higher Tier

Question			Expected Answers	Marks	Rationale
1	a	i	any two from: damages/kills living cells(1) causes cancers (1) causes mutations (1) produces ions (in cells)/breaks apart molecules (1) ions disrupt/take part in chemical reactions (in cell) (1)	2	ignore harms cells accept removal of electron (from atom)
		ii	benefit - may cure cancer / cancer is likely to kill / cancer high risk / extends life (1) risk - may cause other damage/side effects (1) comparison of benefits and risks e.g. benefits outweigh risk (1)	3	accept 'kills cancer cells is a benefit' accept an example of damage candidates must address the question for this mark accept implied relationship e.g. linking phrases, such as 'however' 'but' for example 'you may live longer but healthy cells may be damaged' the 'comparison' mark can be awarded if linking a benefit and risk even if the benefit and/or risk do not gain a mark
	b		uranium (nucleus) decay/undergoes fission/splits (1) produces neutron(s) (1) idea of repeating/carrying on / neutrons trigger another fission (1)	3	points may be shown on a diagram idea of repeating must be in the context of Uranium fission
	C		```automatically shut down - so cannot melt down/explode (1) OR water released over reactor - prevents over heating/meltdown (1)```	1	mark is for explanation

Question		Expected Answers	Marks	Rationale
$\mathbf{1}$	\mathbf{d}	any one from: same number of protons (1) 92 protons (1) any one from: different number of neutrons (1) (three) more neutrons in U-238 (1)	2	allow 1 mark for correct half life difference including direction (U-235 less than U-238 or quoting values from table)
e	indication of 3 half lives e.g. halving three times (1) 13.5 billion (1)	2	correct numerical answer gains 2 marks	
		Total	$\mathbf{1 3}$	

2	a		gravity		1	do not accept ' g force'
	b	i	any two from: pressure increases (1) particles move faster/ have more kinetic energy (1) more frequent/energetic collisions (1) particles have increased momentum (1) increased forces during collisions (1)		2	do not accept 'moves more' or 'vibrates' or just 'more energy' allow collisions with 'edge' or 'boundary' accept 'more collisions'
		ii	-270		1	
	c	i	name of particle proton neutron	charge on particle positive none	1	both required do not accept 'neuron' or 'nucleon'

Question			Expected Answers	Marks	Rationale
2	c	ii	electrical/electrostatic/electromagnetic (repulsion) (1)	1	accept 'repulsion of charges' or 'static' do not accept 'magnetic' repulsion is insufficient on its own
	d	i	Hydrogen (1) \rightarrow Helium (1)	2	per correct answer (1) allow H and He (symbols must be correct) ignore any balancing/additional numbers
		ii	```top box: core (1) energy produced/fusion takes place (1) middle box: Either convection zone (1) energy transferred (outwards) by convection currents (1) Or radiative zone (1) energy transferred (outwards) as radiation/light/photons (1) bottom box: Either photosphere (1) light/energy radiated into space / energy transferred to light (1) or convection zone (1) energy transferred (outwards) by convection currents (1)```	6	do not accept 'fission' accept 'convective' or 'convectional' zone requires idea of convection currents or cells accept 'emitted' or idea of energy leaving star. accept 'convective' or 'convectional' zone requires idea of convection currents or cells

Question			Expected Answers	Marks	Rationale
3	a	i	49 minutes	1	
		ii	mentions Earth rotation and moon orbit (1) both rotate in same direction (1)	2	ignore reference to Earths orbit
	b		(A) E D H (1)	3	if both $3^{\text {rd }}$ box is B and $4^{\text {th }}$ box is F then award 1 mark for the two boxes e.g. for 2 marks a candidate may write only one letter allowed in each box
	c		moon must be between Earth and Sun / Moon blocks light from Sun (for eclipse) (1) lunar orbit tilted (relative to Earth's orbit) (1) so often above/below/not in line with Earth and Sun (1)	3	'Moon blocks Sun' is insufficient points may be shown on a diagram ora accept for 1 mark, 'lunar shadow is very small/eclipse not visible everywhere' must be stated and not just shown on diagram
			Total	9	

Question			Expected Answers	Marks	Rationale
5	a		ray through centre of lens continues straight to intersect bottom ray (1) top ray bends in lens then continues as straight line to intercept of central and bottom ray (1) image labelled at intercept of two rays (1)	3	no mark for a ray if it is continued in more than one direction
	b	i	$\begin{aligned} & \text { re-arrangement } \mathrm{f}=1 \div \mathrm{P} \text { or } \mathrm{f}=1 \div 20(1) \\ & 0.05(1) \end{aligned}$	2	correct numerical answer (2)
		ii	correct substitution: $\mathrm{m}=0.5 \div 0.01$ (1) 50 (1) $50 \text { (1) }$	2	correct numerical answer (2) if units given in answer, maximum 1 mark
		iii	magnification=1/ no/little magnification (1)	1	ora ignore comments about focus or blurring
	c	i	(concave/curved) mirror	1	accept parabolic mirror
		ii	parallel light rays (1) reflected to a focus from a curved mirror (1)	2	judge parallel lines by eye - this mark is independent of whatever the reflecting/refracting object is
	d		radio waves have longer wavelength than visible light (1) links diffraction to wavelength or aperture size (1) aperture must be (much) larger than wavelength (1)	3	
			Total	14	

Grade Thresholds

General Certificate of Secondary Education
Physics A (Specification Code J635)
June 2008 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A*	A	B	C	D	E	F	G	U
A331/01	Raw	42	N/A	N/A	N/A	31	26	22	18	14	0
	UMS	34	N/A	N/A	N/A	30	25	20	15	10	0
A331/02	Raw	42	37	33	28	23	18	15	N/A	N/A	0
	UMS	50	45	40	35	30	25	23	N/A	N/A	0
A332/01	Raw	42	N/A	N/A	N/A	27	23	20	17	14	0
	UMS	34	N/A	N/A	N/A	30	25	20	15	10	0
A332/02	Raw	42	34	29	23	18	13	10	N/A	N/A	0
	UMS	50	45	40	35	30	25	23	N/A	N/A	0
A333/01	Raw	55	N/A	N/A	N/A	27	22	17	13	9	0
	UMS	100	N/A	N/A	N/A	60	50	40	30	20	0
A333/02	Raw	55	42	33	23	14	9	6	N/A	N/A	0
	UMS	100	90	80	70	60	50	45	N/A	N/A	0
A339	Raw	40	33	29	25	21	17	13	10	7	0
	UMS	100	90	80	70	60	50	40	30	20	0
A340	Raw	40	33	30	26	23	19	16	13	10	0
	UMS	100	90	80	70	60	50	40	30	20	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A*	A	B	C	D	E	F	G	U
J635	300	270	240	210	180	150	120	90	60	0

The cumulative percentage of candidates awarded each grade was as follows:

	A*	A	B	C	D	E	F	G	U	Total No of Cands
J635	18.9	53.4	83.5	96.2	99.0	99.8	100.0	100.0	100.0	10692

10955 candidates were entered for aggregation this series
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

