Paper Reference(s)

1535/04 1536/04 1529/04 1539/04 1549/04 Edexcel GCSE

GCSE Science B

Specimen Paper
Materials required for examination
None
Items included with question papers
None

Instructions to Candidates

In the boxes on each of the answer books, write your centre number, candidate number, surname and initials, the paper reference and your signature. If more than one paper reference is shown, you should write the one for which you have been entered.
Answer all questions in the spaces provided in the answer books.
Information for Candidates
The marks for the various parts of questions are shown in round brackets: e.g. (2).
Candidates entered for 1535 Science: Single Award B have three answer books to complete, for Paper 4B, Paper 4C and Paper 4P. They each should be completed in 30 minutes, giving a total examination time of 1 hour 30 minutes.

Candidates entered for 1536 Science: Double Award B have three answer books to complete, for Paper 4B, Paper 4C and Paper 4P. They each should be completed in 30 minutes, giving a total examination time of 1 hour 30 minutes.

Candidates entered for 1529 Biology B have one answer book to complete, Paper 4B. It should be completed in 30 minutes.
Candidates entered for 1539 Chemistry B have one answer book to complete, Paper 4C. It should be completed in 30 minutes.
Candidates entered for 1549 Physics B have one answer book to complete, Paper 4P. It should be completed in 30 minutes

Thus candidates entered for a single separate science will have 30 minutes of examining time, for two separate sciences, 1 hour, and for all three separate sciences, 1 hour 30 minutes.

Turn over

Centre Number						Paper Reference	Surname
Candidate Number						Signature	

1535/4B 1536/4B 1529/4B
 Edexcel GCSE

For Examiner's use only

Science: Single Award B

[1535]
Paper 4B
Science: Double Award B
[1536]
Paper 4B
Biology B
[1529]
Paper 4B

HIGHER TIER

Specimen Paper
Time: 30 minutes

Materials required for the examination None

N230900
Items included with these question papers None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials, then write the correct paper reference for your examination. The paper reference is shown below the boxes. If more than one paper reference is shown, you should write the one for which you have been entered.
Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 6 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	

This symbol shows where ideas and evidence are being assessed.
Additional Answer Sheets may be used.

1. The diagram shows the human digestive system.

(a) (i) The digestion of starch begins in the mouth.

Name the enzyme that digests starch.
\qquad
(ii) In which organ does the digestion of protein begin?
\qquad
(b) Digested food is absorbed into the blood through the villi. The diagram shows a section through a villus.

Describe TWO features of villi that help the absorption of digested food.
1

2 \qquad
(c) People can get food poisoning from eating food containing harmful bacteria. One effect of food poisoning is diarrhoea. This means that only a little water is absorbed from the digestive system into the blood.
(i) On the diagram of the digestive system opposite, shade in the organ where most water is usually absorbed into the blood.
(ii) Explain why body temperature may rise if diarrhoea lasts for a few days.
\qquad
\qquad
\qquad
\qquad
2. Scientists can now use body cells from an adult sheep to produce genetically identical
copies of the adult. The copies are called clones.
The diagram shows some stages in this process.
Ideas
adult sheep

body cells taken	body cells divide from adult	embryos develop to produce embryos
into clones		

(a) What type of reproduction produces clones?
\qquad
(b) Why must the body cells be protected from ultraviolet light and X-rays?
\qquad
\qquad
(c) In early experiments, many of the embryos died.

Suggest why this happened.
\qquad
\qquad
(d) The scientists did not publish the details of their early experiments.

Suggest why.
\qquad
\qquad
(e) After the successful production of clones, the scientists published the details of their methods. Scientists in other laboratories could then repeat the work.

Explain why it is important that scientists in other laboratories could repeat the cloning experiments.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Dan measured the volume of urine he produced during the morning on two different days. His water intake was the same on both days. He did the same amount of exercise on both days. One day was hot, the other was cold.

His results are shown in the table.

	Conditions	
	Hot day	Cold day
Average volume of urine produced per hour $\left(\mathrm{cm}^{3} / \mathrm{h}\right)$	20	60

Explain how the volume of urine produced is affected by the hormone ADH.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. (a) The diagram shows part of a reflex arc.

Describe the sequence of events that takes place following stimulation of the receptor.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Heroin is an addictive drug.

Explain what is meant by addiction.
\qquad
\qquad
\qquad
\qquad
5. The diagram shows two fruit flies (Drosophila). One has normal wings, the other has short wings.

normal wings

short wings

A normal-winged fruit fly was crossed with a short-winged fruit fly. The offspring they produced are shown.

Wing length is inherited. The allele for normal wings (N) is dominant to the allele for short wings (n).
Fill in the spaces to show how a fruit fly with normal wings and a fruit fly with short wings can be crossed to produce the offspring shown.
(a) Phenotype of parents:
(b) Genotype of parents:

(c) Gametes:

(d) Possible genotypes of offspring: \square
\square
6. Vehicle exhaust gases contain harmful substances.

Air pollution produced by vehicles is a problem in towns.

Suggest what could be done to reduce air pollution produced by vehicles in towns. You should make clear the scientific principles involved.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Centre Number					
Paper Reference					
Candidate Number					

Surname	Initials
Signature	

1535/4C 1536/4C 1539/4C

 Edexcel GCSE

 Edexcel GCSE}

For Examiner's
use only

For Team
Leader's use

Science: Single Award B

[1535]
Paper 4C
Science: Double Award B
[1536]
Paper 4C
Chemistry B
[1539]
Paper 4C
HIGHER TIER
Specimen Paper
Time: 30 minutes
Materials required for the examination None

N230900
 Items included with these question papers
 None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials, then write the correct paper reference for your examination. The paper reference is shown below the boxes. If more than one paper reference is shown, you should write the one for which you have been entered.
Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 5 questions. There is 1 blank page.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.
This symbol shows where ideas and evidence are being assessed.
© 2000 Edexcel
This publication may only be reproduced in accordance with Edexcel copyright policy.
Edexcel Foundation is a registered charity.

THE PERIODIC TABLE

12
Group
3
4
5
6
0

Key
Relative atomic mass
Symbol
Name
Atomic number

1. Alan and Mo investigated fermentation. The word equation for fermentation is:

$$
\text { sugar } \xrightarrow{\text { yeast }} \text { ethanol }+ \text { carbon dioxide }
$$

They carried out the experiment at different temperatures using the same amounts of sugar and yeast. They used their results to draw this graph.

(a) At first, readings were taken at $20^{\circ} \mathrm{C}, 30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. Alan and Mo then took two extra readings at $36^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$.
Suggest why it was important to take these extra readings.
\qquad
\qquad
(b) Why did the reaction slow down at temperatures above $40^{\circ} \mathrm{C}$?
\qquad
\qquad
\qquad
\qquad
2. (a) Natural gas is used as a fuel for heating and cooking. Natural gas contains the hydrocarbon methane.
(i) Write the balanced equation for the burning of methane in air.
\qquad
(ii) What is a hydrocarbon?
\qquad
\qquad
(b) In the early 1700 's, scientists used the phlogiston theory to explain what happened when a substance burned.

This theory states that every substance is made of ash and phlogiston. When a substance burns, the phlogiston escapes and the ash is left behind.

Lavoisier was a French scientist. He found that some substances became heavier when they burned.
Ideas
(i) Explain how the work of Lavoisier showed that the phlogiston theory was wrong.
\qquad
\qquad
\qquad
\qquad
(ii) Use your knowledge of burning to explain the results of Lavoisier's experiments.
\qquad
\qquad
\qquad
\qquad
3. Cracking is an important chemical process.

An example of a cracking reaction is shown in the equation below.

(a) Explain what is meant by cracking.
\qquad
\qquad
\qquad
\qquad
(b) Ethene is an unsaturated hydrocarbon.

What is meant by unsaturated?
\qquad
\qquad
(c) Explain how plastics are formed from unsaturated hydrocarbons.
\qquad
\qquad
\qquad
\qquad
4. (a) When chlorine is bubbled into potassium bromide solution, the solution turns red-brown.
bromide solution
Explain this observation and give the reason why this reaction takes place.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) When moist universal indicator paper is placed in chlorine, the paper turns white. Why does the paper turn white?
\qquad
\qquad
(c) The halogens have similar chemical properties.

Explain this by reference to their electronic structures.
\qquad
\qquad
\qquad
\qquad
(d) Chlorine reacts with iron.

Write the balanced equation for this reaction.
\qquad
4. When magnesium ribbon reacts with hydrochloric acid, it produces hydrogen. John used this apparatus to investigate the reaction.

He carried out his experiment at two different temperatures. His results are shown on the graph.

State what the graphs show about the rates of reaction and explain your answer in terms of the behaviour of the particles.
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)
TOTAL 30 MARKS

Centre Number						Paper Reference	Surname
Candidate Number						Initials	

1535/4P 1536/4P 1549/4P
 Edexcel GCSE
 Science: Single Award B
 [1535]
 Paper 4P
 Science: Double Award B
 [1536]
 Paper 4P
 Physics B
 [1549]
 Paper 4P
 HIGHER TIER
 Specimen Paper

For Examiner's use only

Time: 30 minutes
N230900
Materials required for the examination None

Items included with these question papers None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials, then write the correct paper reference for your examination. The paper reference is shown below the boxes. If more than one paper reference is shown, you should write the one for which you have been entered.
Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.
Information for Candidates
The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 5 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.
This symbol shows where ideas and evidence are being assessed.

Question Number	Leave Blank
1	
2	
3	
4	
5	

1. The current in a wire was measured at different voltages.

The table shows the results.

Current in amperes (A)	0.20	0.35	0.55	0.70	0.85
Voltage in volts (V)	0.8	1.4	2.2	2.8	3.4

(a) Use the data to draw a graph of current against voltage.

(b) Describe how the current in the wire changes when the voltage is increased.
\qquad
\qquad
\qquad
\qquad
(c) Calculate the resistance of the wire when the current is 0.6 A .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 (a) Carbon-14 $\left({ }_{6}^{14} \mathrm{C}\right)$ is a radioactive isotope of carbon.
Describe the difference between an atom of carbon-14 and an atom of carbon-12 ($\left.{ }_{6}^{12} \mathrm{C}\right)$ in terms of the particles involved.
\qquad
\qquad
\qquad
\qquad
(b) Radon gas is emitted from granite and can collect in buildings.

It decays by emitting alpha particles.
Explain whether the presence of radon gas in buildings is a health hazard.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. In 1609 Galileo was one of the first scientists to use a telescope. He used it to look at the planet Jupiter. The diagrams show what he observed.

The small object close to Jupiter had not been seen before. It was later named Io.
(a) Suggest a conclusion that Galileo could draw from his observations.
\qquad
\qquad
(b) Explain how Galileo's observations went against the belief that all heavenly bodies revolve around the Earth.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Galileo published his findings in a book called The Starry Messenger.

Why did Galileo publish his findings?
\qquad
\qquad
4. (a) Infra-red and radio waves are two of the waves that make up the electromagnetic spectrum.
Describe one similarity and one difference between infra-red and radio waves.
Similarity \qquad
\qquad
Difference \qquad
\qquad
(b) The diagram shows how a satellite is used in the transmission of radio waves to different parts of the world.

(i) Explain why a satellite is needed to transmit the waves from T to R .
\qquad
\qquad
\qquad
\qquad
(ii) Modern satellite transmissions use digital signals rather than analogue signals. Describe the difference between a digital signal and an analogue signal.
A diagram could help to make your answer clear.
\qquad
\qquad
\qquad
\qquad
5. (a) Electricity is transmitted by the national grid using a combination of overhead and underground cables. Explain ONE advantage of each method of transmission.

Overhead transmission
\qquad
\qquad
\qquad
Underground transmission
\qquad
\qquad
\qquad
(b) Most of the electricity in the United Kingdom is generated from non-renewable sources. Some electricity is generated from moving water. Wind turbines also contribute to the electricity supply.

Explain why these renewable sources can not provide all of the electricity needed in the United Kingdom.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Science B

GCSE
Specimen paper
Materials required for examination
Items included with question papers
None
None

Instructions to Candidates

In the boxes on each of the answer books, write your centre number, candidate number, surname and initials, the paper reference and your signature. If more than one paper reference is shown, you should write the one for which you have been entered.
Answer all questions in the spaces provided in the answer books.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
Candidates entered for 1536 Science: Double Award B have three answer books to complete, for Paper 5B, Paper 5C and Paper 5P. They each should be completed in 30 minutes, giving a total examination time of 1 hour 30 minutes.

Candidates entered for 1529 Biology B have one answer book to complete, Paper 5B. It should be completed in 30 minutes.
Candidates entered for 1539 Chemistry B have one answer book to complete, Paper 5C. It should be completed in 30 minutes.
Candidates entered for 1549 Physics B have one answer book to complete, Paper 5P. It should be completed in 30 minutes

Thus candidates entered for a single separate science will have 30 minutes of examining time, for two separate sciences, 1 hour, and for all three separate sciences, 1 hour 30 minutes.

Turn over

Centre Number						Paper Reference	Surname	Initials
Candidate Number						Signature		

1536/5B 1529/5B
Edexcel GCSE
Science: Double Award B [1536]
Paper 5B
Biology B
[1529]
Paper 5B
HIGHER TIER
Specimen Paper

For Examiner's use only

Time: 30 minutes

Materials required for the examination
None
Items included with these question papers
None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials, then write the correct paper reference for your examination. The paper reference is shown in the top left hand corner. If more than one paper reference is shown, you should write the one for which you have been entered.

Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 6 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	

Turn over

1. Two students, Peter and Kelly, ran an 800 metres race.

Before the race, when they were resting, Peter's pulse rate was 82 beats per minute and Kelly's was 70 beats per minute.
Just after the race, their teacher measured their pulse rates (beats per minute).
The teacher measured them again at 2 minute intervals.
The results are shown in the table below.

	Time after race (minutes)				
	0	2	4	6	8
Peter's pulse rate (beats per minute)	120	100	91	86	83
Kelly's pulse rate (beats per minute)	100	82	73	70	70

Peter's results are shown on the grid.

(a) On the same grid, draw a graph of Kelly's results.
(b) Recovery rate is one measure of fitness.

Explain how the graphs show that Kelly is probably fitter than Peter.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Read the newspaper article and then answer the questions.

Abstract

Environmentally 'friendly herbicide' found Biologists working on The Great Barrier Reef off the coast of Australia have discovered herbicides that are harmless to humans, other animals and crops. Greenhouse trials show that some substances in reef organisms stop photosynthesis in weeds. If field trials show the same results as the greenhouse trials, these substances could be a new class of herbicide which kill weeds without damaging the environment or crops. The biologists got the idea for their work because they noticed that parts of the reef had no plants. They found about 5000 separate substances in the reef organisms. The biologists tested each substance for its effect until they found the substances they were looking for.

(a) Explain how the herbicides from reef organisms kill weeds.
\qquad
\qquad
\qquad
(b) Farmers already use herbicides to kill weeds.

Suggest why herbicides from reef organisms are described as a new class.
\qquad
(c) Suggest why the first trials were carried out in a greenhouse rather than in a field.
\qquad
\qquad
\qquad
(d) What observation gave the biologists the idea to do the research?
\qquad
(e) Explain why it was important to test each of the 5000 substances separately.
\qquad
3. The diagram shows a root hair cell in the soil.

(a) Explain how the root hair cell takes up nitrate ions from the soil.
\qquad
\qquad
\qquad
\qquad
(b) Gardeners dig soil to let more air into it. This increases the uptake of nitrate ions. Explain why.
\qquad
\qquad
\qquad
\qquad
4. The graph shows the change in the total length of hedgerows in this country between 1940 and 1990.

Biodiversity refers to the number of different types of living organisms in a habitat. Explain how the change in the total length of hedgerows affects the biodiversity of this habitat.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. The diagram shows a section through the heart during contraction of the atria.

Describe the changes that occur in the heart which cause blood to enter the arteries. Refer to the action of the ventricles and the valves.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Cystic fibrosis is an inherited disease.
(a) Explain how it is possible to inherit cystic fibrosis even though neither parent suffers from the disease.
\qquad
\qquad
\qquad
\qquad
(b) One symptom of cystic fibrosis is the production of too much mucus in the lungs.

Explain why people suffering from cystic fibrosis are more vulnerable to lung infections than non-sufferers.
\qquad
\qquad
\qquad
\qquad

Centre Number						Paper Reference	Surname
Candidate Number						Initials	

1536/5C 1539/5C

Edexcel GCSE

For Examiner's

Science: Double Award B [1536]
Paper 5C
Chemistry B
[1539]
Paper 5C
HIGHER TIER
Specimen Paper
Time: 30 minutes

Materials required for the examination None

Items included with these question papers
None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials, then write the correct paper reference for your examination. The paper reference is shown in the top left hand corner. If more than one paper reference is shown, you should write the one for which you have been entered.

Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 4 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.

Question Number	Leave Blank
1	
2	
3	
4	

Turn over This symbol shows where ideas and evidence are being assessed. Additional Answer Sheets may be used.

Edexcel Foundation is a registered charity
Success through quanfications
THE PERIODIC TABLE
Group

	¢ ¢ \％品品吅	为亳		
$=\text { 以总 }$		$=\stackrel{\sim}{\infty}$		
$\bigcirc \bigcirc$			\mid	$\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \end{gathered}\right.$
士 二繯		$2)^{\infty}$	즐	

7
∞
Group

r
$\infty \quad+\frac{0}{\underline{T}}$
-

こ儿蔮			気号	
$=\boldsymbol{n}_{\mathrm{g}}^{\mathrm{g}}$			$\because \Xi \text { 膏 }$	

2									
	$\underset{\substack{7 \\ \text { Lithium }}}{ }$	$\underset{\text { Becylium }}{\mathrm{Be}_{4}^{9}}$							
3	Na Sodium								
4	$\underset{\text { Poassium }}{\mathbf{3 9}}$	$\begin{gathered} \hline 40 \\ \hline \text { Calcium } \\ 20 \\ \hline 20 \end{gathered}$	$\begin{array}{\|c} \hline 45 \\ \mathrm{Scandium}^{\mathrm{Sc}} \\ \hline \end{array}$	$\underset{\substack{48 \\ \text { Titanium }}}{\substack{48 \\ 0}}$	$\begin{gathered} \hline 51 \\ \mathrm{~V}_{\substack{\text { Vanadium } \\ 23}} . \end{gathered}$	$\underset{\text { Chromium }}{\stackrel{52}{\mathrm{Cr}}}$	$\begin{gathered} 55 \\ \mathrm{Mangangese}^{2} \\ \text { Mang } \end{gathered}$	$\begin{aligned} & 56 \\ & { }_{\text {Iron }} \end{aligned}$	$\begin{gathered} 59 \\ \text { Co } \\ \text { Cobatr } \end{gathered}$
5	$\begin{gathered} 85 \\ \text { Rub } \\ \text { Rubidium } \\ 37 \end{gathered}$	$\begin{array}{\|c\|} \hline 88 \\ \hline \text { Strontum } \\ 38 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 89 \\ \text { Y } \\ \text { Ytruium } \\ 39 \end{array}$	$\begin{gathered} 91 \\ \mathrm{Zircrenium}_{40}^{90} \end{gathered}$	$\underset{\substack{\mathrm{Niobium} \\ \text { A1 }}}{ }$	$\begin{gathered} 96 \\ \text { Molydyenun } \\ \mathrm{Mo} \\ \hline 12 \end{gathered}$		$\begin{gathered} 101 \\ \text { Ruthenium } \\ \text { Rut } \\ \hline 14 \end{gathered}$	$\underset{\text { Rhodium }}{\text { Rh }}$
6	$\begin{array}{\|c\|c} \hline 133 \\ \text { Ccs } \\ \text { Cassium } \end{array}$	Ba Barium	$\begin{gathered} 139 \\ \hline \text { Lantanum } \\ \text { Lantinam } \end{gathered}$		$\begin{array}{\|c} \hline 181 \\ \hline \text { Ta } \\ \text { Tanalum } \end{array}$	$\begin{array}{\|c\|} \hline 184 \\ \hline \text { Tungsten } \\ \hline \text { Th } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 190 \\ \hline \mathrm{Os} \\ \text { Osmium } \\ 76 \end{array}$	
7	$\begin{array}{\|c\|} \hline \text { Fr } \\ \text { Francium } \\ 87 \\ \hline \end{array}$	$\begin{gathered} \hline 226 \\ \text { Ra } \\ \text { Radium } \\ 88 \\ \hline \end{gathered}$							

Key
Relative atomic mass
Symbol
Name
Atomic number

苞

1. (a) Water is a covalent compound formed when hydrogen burns.

Write the balanced equation for the burning of hydrogen.
\qquad
(b) A small piece of sodium is dropped into a large beaker of water. It reacts to form sodium hydroxide solution and a gas.
(i) Describe three things you would see.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Give the name of the gas formed by this reaction.
\qquad
(iii) Use the periodic table provided to help you predict how the reaction of caesium with water would be different to the reaction of sodium with water.
\qquad
\qquad
(c) Sodium chloride is an ionic compound which dissolves in water.
(i) Explain why sodium chloride solution conducts electricity.
\qquad
\qquad
\qquad
(ii) Explain why solid sodium chloride does not conduct electricity.
\qquad
\qquad
\qquad
\qquad
2. The ancient Greeks first thought of the idea of atoms. They had no experimental evidence of atoms but they liked the idea. Between 1803 and 1808, John Dalton worked out his atomic theory. He used the results of his own experiments and those of the French scientist Antoine Lavoisier.

Dalton stated:
\div every chemical element is made up of atoms.
\div the atoms of one element are different to those of all other elements.
\div all atoms of a particular element are identical and have the same mass.
\div chemical compounds are formed when atoms of different elements join together to form molecules.
\div atoms cannot be split.
Ideas
(a) Why was John Dalton's theory more scientific than that of the ancient Greeks?
\qquad
\qquad
(b) In 1811, Avogadro suggested that hydrogen gas contained molecules made from two hydrogen atoms joined together. Dalton would not accept this idea. He asked "If two hydrogen atoms in a container filled with this gas can cling together, why do not all cling together and condense to a liquid?"
(i) What was Dalton suggesting?
\qquad
\qquad
(ii) Explain, using a dot and cross diagram, why a hydrogen molecule contains only two hydrogen atoms.
(iii) In 1908, the scientists Wilhelm Ostwald and Ernst Mach still opposed the atomic theory of matter. They were unwilling to accept purely indirect evidence. Explain why the evidence for the existence of atoms was indirect.
\qquad
\qquad
3. Ammonia is made using the Haber process.
(a) The equation for the reversible reaction is:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

When nitrogen and hydrogen form ammonia, heat is evolved.
(i) How is the yield of ammonia affected by increasing the temperature?
\qquad
(ii) How is the yield of ammonia affected by increasing the pressure?
\qquad
(b) When the Haber process was first used, the hydrogen was obtained by the electrolysis of water. It is now cheaper to obtain hydrogen by heating methane with steam rather than by electrolysis.
Suggest why.
\qquad
\qquad
(c) Most of the ammonia produced is reacted with acids to form fertilisers.

Write a balanced equation for the reaction of ammonia with sulfuric acid.
4. Two samples of rock from different parts of a volcanic island have the same chemical composition but different crystal sizes.
(a) Explain why the rocks have different crystal sizes.
\qquad
\qquad
\qquad
\qquad
(b) Analysis of another rock showed that it contains an oxide of tin in which 3.57 g of tin is combined with 0.96 g of oxygen.
Show that the empirical formula of the tin oxide present in the rock is SnO_{2}. (Relative atomic masses: $\mathrm{O}=16, \mathrm{Sn}=119$)
\qquad
\qquad
\qquad
\qquad
\qquad

Centre Number						Paper Reference	Surname
Candidate Number						Initials	

1536/5P 1549/5P

Edexcel GCSE

Science: Double Award B
[1536]
Paper 5P
Physics B
[1549]
Paper 5P
HIGHER TIER
Specimen Paper

Time: 30 minutes

Materials required for the examination None

Items included with these question papers
None

For Examiner's
use only

1. Nuclear power stations produce waste materials that are radioactive.

Rubber gloves and other items of protective clothing used in nuclear power stations are low level waste.
To dispose of them, they are sealed in glass inside corrosion-resistant metal containers.

The containers are then buried deep underground. This is shown in the diagram.
(a) Scientists think that the waste material is safe if there are three barriers separating it from people. The glass and the metal containers are two barriers.

What is the third barrier?
\qquad
(b) After 100 years, the waste material is thought to present no danger to people. How does the activity of the waste change over a time span of 100 years?
\qquad
(c) How certain can scientists be that this method of disposal of radioactive waste materials is safe? Give full reasons for your answer.
2. The diagram shows a metal wire placed in a magnetic field.

(a) Which arrow shows the direction of the magnetic force on the wire?
\qquad
(b) In a d.c. motor, the forces on a coil of wire make it rotate.

The diagram shows a simple motor and the force acting on one side of the coil of wire.

Draw an arrow on the diagram to show the force acting on the right-hand side of the coil of wire.
(c) The current in the coil is reversed. Draw arrows on the diagram below to show the forces now acting on the sides of the coil of wire.

3. The diagrams show what happens when light meets a glass-air boundary at different angles of incidence.

A

B

C
(a) Describe what is happening to light in diagrams \mathbf{A} and \mathbf{C}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Complete the diagram to show how light passes through a prism in a cycle reflector.

4. A hot air balloon is tied to the ground by two ropes.

The diagram shows the forces acting on the balloon.

The ropes are untied and the balloon starts to move upwards.
(a) Calculate the size of the unbalanced force acting on the balloon.

State the direction of this force.
\qquad
\qquad
\qquad
(b) The mass of the balloon is 765 kg . Calculate the initial acceleration of the balloon.
\qquad
\qquad
\qquad
\qquad
(c) Explain how the acceleration of the balloon changes during the first ten seconds of its flight.
(d) When the balloon is still accelerating, the balloonist throws some bags of sand over the side. Explain how this affects the acceleration of the balloon.
\qquad
\qquad
\qquad
\qquad
5. (a) An aircraft in flight becomes charged.

The aircraft tyres are made of rubber that conducts electricity.
Suggest what happens to the charge on the aircraft when it lands.
\qquad
\qquad
\qquad
\qquad
(b) The charge on an aircraft is $2.0 \times 10^{-4} \mathrm{C}$.

It passes through the tyres in 0.5 s .
Calculate the current in the tyres when the charge is passing through them.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Paper Reference(s)
1529/06 1539/06 1549/06
Edexcel GCSE
GCSE Science B

Specimen paper
Materials required for examination
Items included with question papers
None
None

Instructions to Candidates

In the boxes on each of the answer books, write your centre number, candidate number, surname and initials, the paper reference and your signature. If more than one paper reference is shown, you should write the one for which you have been entered.
Answer all questions in the spaces provided in the answer books.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
Candidates entered for 1529 Biology B have one answer book to complete, Paper 6B. It should be completed in 30 minutes.
Candidates entered for 1539 Chemistry B have one answer book to complete, Paper 6C. It should be completed in 30 minutes.
Candidates entered for 1549 Physics B have one answer book to complete, Paper 6P. It should be completed in 30 minutes

Thus candidates entered for a single separate science will have 30 minutes of examining time, for two separate sciences, 1 hour, and for all three separate sciences, 1 hour 30 minutes.

Centre Number						Paper Reference	Surname
Candidate Number					$\mathbf{1 5 2 9 / 6 B}$	Initials	

1529/6B
 Edexcel GCSE

For Examiner's use only

Biology B [1529] Paper 6B

HIGHER TIER
 Specimen Paper

Time: 30 minutes

Materials required for the examination None

Items included with these question papers None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials.

The paper reference is shown below the boxes.
Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 4 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.

Question Number	Leave Blank
1	
2	
3	
4	

Turn over
This symbol shows where ideas and evidence are being assessed.
Additional Answer Sheets may be used.

Edexcel Foundation is a registered charity

1. Eric investigated the fermentation of solution \mathbf{X} by yeast at different temperatures over a 24-hour period.
He used the apparatus shown below.

His results are shown on the table.

Temperature $\mathbf{(\pm C)}$	Volume of carbon dioxide collected in 24 hrs (cm			
10	25	28	28	Average volume of carbon dioxide collected in 24 hrs(cm
20	58	65	66	27
30	99	108	102	63

(a) Calculate the average volume of carbon dioxide produced over 24 hours at $30 \pm \mathrm{C}$. Show your working.
(b) What is the advantage of calculating an average volume of carbon dioxide for each temperature?
(c) What do Eric's results show about the relationship between temperature and the rate of fermentation?
\qquad
\qquad
(d) What would be the effect of a temperature of $0 \pm \mathrm{C}$ on the rate of fermentation? Give a reason for your answer.
\qquad
\qquad
2. The diagram shows how scientists produced Dolly the sheep.

(a) (i) Dolly was produced with the help of an unfertilised egg. Where did the scientists get the DNA to put into this egg?
(ii) Suggest why it was important to remove the DNA from the unfertilised egg.
\qquad
\qquad
(iii) Dolly is genetically identical to another sheep in the diagram. Which one?
\qquad
(b) Give one way in which this method is different from the normal method of sheep reproduction.
(c) The production of Dolly was a significant advance in scientific work. The work may result in animal clones being produced in large numbers.

Suggest why it is important that people are informed of new scientific advances.
\qquad
\qquad
\qquad
(d) Suggest one advantage of producing animal clones.
\qquad
\qquad
3. A person was given two vaccinations of an inactivated virus. The graph shows the person's primary and secondary immune responses.

(a) Draw an arrow on the graph to show when the second vaccination was given.
(b) Describe how proteins on the outside of inactivated viruses result in the production of antibodies.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Give three ways in which the primary immune response is different from the secondary

Leave blank immune response.
1.
\qquad
2.
\qquad
3.
\qquad
(d) Why is it important to use an inactivated virus?
\qquad
4. Read the newspaper article about soya bean plants.

GM SOYA BEANS

Traditional soya bean plants are killed by selective weedkillers. Genetic engineers have transferred a gene into a soya bean plant to create a genetically modified variety. This new variety of soya bean plant is resistant to selective weedkiller. Farmers in the USA grow this variety and use selective weedkiller to improve crop yield.

Some people are concerned that there are dangers in growing genetically modified soya beans.
(a) What is meant by the term genetically modified?
\qquad
\qquad
\qquad
(b) The new variety of soya bean plant is resistant to selective weedkiller.

Explain how this can increase crop yield when the new variety is grown.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Suggest two ways in which growing the new variety of soya bean plants may be harmful.
1.

2 \qquad

Centre Number						Paper Reference	Surname
Candidate Number					$1539 / 6 \mathrm{C}$	Initials	

1539/6C
 Edexcel GCSE

For Examiner's use only

Chemistry B [1539] Paper 6C

HIGHER TIER Specimen Paper

Time: 30 minutes

Materials required for the examination None

Items included with these question papers None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and initials.

The paper reference is shown below the boxes.
Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 3 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.
This symbol shows where ideas and evidence are being assessed.
Turn over

Question Number	Leave Blank
1	
2	
3	
Total	

Additional Answer Sheets may be used.

Edexcel Foundation is a registered charity

THE PERIODIC TABLE

Group

Period
1

4

Key
Relative atomic mass
Symbol
Name
Atomic number

1. (a) Complete the table which shows the tests for some ions in solution.

Name of ion in solution	Reagent added to the solution	Positive result
copper (II)		light blue precipitate
.........................	dilute nitric acid + silver nitrate solution	white precipitate
sulfate	\qquad

(b) Describe a test to show the presence of ammonium ions in ammonium chloride.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TURN OVER FOR QUESTION 2

2. Outline a method for manufacturing ethanol.

Include raw materials and necessary reaction conditions.
3. Much of the sulfur dioxide required for the manufacture of sulfuric acid is obtained from roasting metal sulfide ores such as zinc sulfide in air. The equation for this reaction is

$$
2 \mathrm{ZnS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}
$$

(a) Calculate the maximum volume of sulfur dioxide, measured at room temperature and atmospheric pressure, which would be released when 48.5 kg of zinc sulfide is roasted.
(Relative atomic masses: $\mathrm{Zn}=65, \mathrm{~S}=32$)
(1 mol of a gas occupies $24.0 \mathrm{dm}^{3}$ at room temperature and atmospheric pressure.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) In the next stage of the process, the sulfur dioxide is converted into sulfur trioxide.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3}
$$

The conversion is carried out at atmospheric pressure and a temperature of $450 \pm$. The use of higher pressures and lower temperatures would give a greater yield of sulfur trioxide.

Explain why such conditions are not normally used.
Higher pressures
\qquad
\qquad
Lower temperatures
\qquad
\qquad
4. The alcohols are an example of an homologous series.
(a) (i) The structures of the first two alcohols in the series are shown.

Complete the table to show the names and the structures of all the alcohols.

Name	Structure
ethanol	
propanol	
butanol	

(ii) Why are these alcohols members of the same homologous series?
\qquad
\qquad
(iii) Describe a trend in a physical property of these alcohols.
\qquad
\qquad
\qquad
\qquad
(b) Compounds in the same homologous series undergo similar chemical reactions.

Describe one such reaction of the alcohols.
Write a balanced equation to show this reaction for one of the alcohols.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Centre Number						Paper Reference	Surname
Candidate Number					$\mathbf{1 5 4 9 / 6 P}$	Signature	

1549/6P
 Edexcel GCSE

For Examiner's use only

Leader's use

Physics B [1549] Paper 6P

HIGHER TIER
 Specimen Paper

Time: 30 minutes

Materials required for the examination
 None

Items included with these question papers None

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your signature, your surname and other names.

The paper reference is shown below the boxes.
Answer ALL questions in the spaces provided in this book.
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for the various parts of questions are shown in round brackets: e.g. (2).
This paper has 4 questions. There are no blank pages.

Advice to Candidates

This symbol shows where the quality of your written answer will also be assessed.

Question Number	Leave Blank
1	
2	
3	
4	

Turn over

This symbol shows where ideas and evidence are being assessed.
Additional Answer Sheets may be used.

1. (a) Most telephone signals are sent through cables in the form of electrical signals. One disadvantage of this is that they can only travel a limited distance before they need to be amplified. A second disadvantage is that stray signals can affect the original signal.
(i) Explain why the electrical signals lose energy as they travel through the cable.
\qquad
\qquad
\qquad
\qquad
(ii) What is the function of the amplifier?
\qquad
(iii) When the stray signals are amplified, a 'hissing' is heard. What term is used to describe this type of signal distortion?
\qquad
(b) A signal can be sent through the cable in either digital or analogue form.
(i) Which method is used to avoid interference due to stray signals?
\qquad
(ii) Digital signals have an advantage over analogue signals since more information can be sent along the cable.
Explain this.
\qquad
\qquad
\qquad
\qquad
(c) Name the transducer used in the earpiece of the telephone used for converting the electrical signals received to sound.
\qquad
2. When air is pumped into a bicycle tyre the pressure inside the tyre increases. As more air is pumped in, it becomes increasingly difficult to push down the piston in the pump.
(a) Explain, in terms of air particles, how pressure is produced inside the tyre.

Leave blank
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Explain why the pressure in the tyre increases as more air is put in it.
\qquad
\qquad
\qquad
3. A geostationary satellite is at a height of 36000 km above the Earth's surface and is used to receive and transmit television signals from the Earth.
(a) The satellite is described as being an active satellite rather than a passive satellite.

Explain the difference between these two types of satellite.
\qquad
\qquad
\qquad
\qquad
(b) Explain how the satellite is able to keep in orbit around the Earth without having its motors running or using energy.
\qquad
\qquad
\qquad
\qquad
(c) The transmitter on the satellite beams 100 W of radiation to the Earth.

Explain how the size of the transmitting dish affects the power per square metre that arrives at the Earth's surface from the satellite.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. At the end of the nineteenth century, physicists considered that the atom consisted of evenly distributed electrons and protons.
(a) Give an outline of what the β-particle scattering experiment involved and how the results led to this the nuclear model of the atom.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Protons and electrons were initially considered to be fundamental particles.

Explain what this term means and state which of the two particles named is still considered to be a fundamental particle.
\qquad
\qquad
\qquad
(c) The neutron was detected much later than either the electron or the proton although it was known to exist.
(i) Suggest why neutrons were much more difficult to detect than protons or electrons.
\qquad
\qquad
\qquad
(ii) Quarks are fundamental particles. What is the connection between quarks, protons and neutrons?
\qquad
\qquad
\qquad

Syllabus 1535
 Science: Single Award B

 Syllabus 1536

 Syllabus 1536

 Science: Double Award B

 Science: Double Award B}

Syllabus 1529
Biology B
Syllabus 1539
Chemistry B
Syllabus 1549
Physics B

Specimen Paper 1

MARK SCHEME

First Examination Summer 2003

USING THE MARK SCHEME

1. This mark scheme gives you; * an idea of the type of response expected

* how individual marks are to be awarded
* the total mark for each question
* examples of responses that should not receive credit.

2. ; separates points for the award of each mark.
3. / means that the responses are alternatives and either answer should receive full credit.
4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
5. Phrases/words in bold indicate that the meaning of the phrase/word is essential to the answer.
6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

1. You must give a tick (in red) for every mark awarded. The tick must be placed on the script close to the answer. The mark awarded for part of a question should be written in the margin close to the sub-total.
2. The sub-total marks for a question should be added together and the total written and ringed at the end of the question then transferred to the front of the script.
3. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
4. Do not award marks for repetition of the stem of the question.
5. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

1. In calculations, full credit must be given for a bald, correct answer. If a numerical answer is incorrect, look at the working and award marks according to the mark scheme.
2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

QUALITY OF WRITTEN COMMUNICATION

This logo indicates where students will be assessed on their ability to:
\div present relevant information in a form that suits its purpose
\div ensure that spelling, punctuation and grammar are accurate, so that the meaning is clear \div use a suitable structure and style of writing.

Paper 1B

1 retina - creates nerve impulses;
pupil - allows light to enter the eye;
iris - allows light to enter the eye;
(3 marks)
2 (a) zygote;
(b) An explanation to include:
male $=\mathrm{XY} /$ has different chromosomes $/ \mathrm{eq}$; female = XX / has same chromosomes / eq;
(c) Any two from:
hair growth - under arm / pubic / body / face;
voice deepens;
shoulders widen;
growth spurt;

3 (a) sulfur dioxide / carbon monoxide;
(b) (i) less pollution at lower speeds (or reverse argument);
(ii) discourage journey;

4 (a) reduces surface area;
(b) muscles contract / work; generating heat;
(c) An explanation to include two from:
sweat glands secrete water;
water / sweat evaporates;
evaporation requires energy / heat from body;
energy / heat loss leads to cooling;

5 (a) (i) carbohydrase / amylase;
(ii) stomach;
(b) A description of two from:
large surface area; thin (tissue);
wall supplied with blood capillaries;
(c) (i) colon shaded
(ii) An explanation to include two from:
less water in blood;
less sweat produced;
less evaporation;
less heat lost;

6 (a) asexual / mitosis; 1
(b) to prevent mutation; 1
(c) technique not fully developed / OWTTE 1
(d) Any one idea from:
to prevent others from accessing the information;
to avoid publicity on failed work;
to avoid controversy / animal rights;
(e) An explanation to include two from:
to demonstrate / prove the technique works;
to spread knowledge / educate;
to allow further research / developments;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that meaning is clear;

Paper 1C

1 (a) (i) S ;
(ii) silicon / germanium / tin / lead;
[Accept correct symbol]
(iii) any metallic element from the periodic table;
(iv) one;
(v) oxygen / sulfur / selenium / tellurium / polonium;
[Accept correct symbol]
(vi) lithium / beryllium / boron / carbon / nitrogen / oxygen / fluorine / neon;
[Accept correct symbol]
(b) bromine;
chlorine;
fluorine;
(v) [Acen/sulfur/seleni]/tellurium/polonium,
(

2 (a) bumper: does not rust / less damage to people in accidents / crumples easily;
carrier bag: stronger / does not rip when wet;
bottle: does not break easily / less dangerous;
(b) An explanation to include three from:
marine deposits / small sea creatures;
sank to sea bed;
covered in silt;
did not rot;
long term / millions of years;
effects of temperature and pressure;

Change	Tick
adding more of the acid to the test tube	
adding water to the test tube	
grinding up the marble chips before adding the acid	\checkmark
using a beaker rather than a test tube $;$	
using more concentrated acid	\checkmark
warming the test tube and contents $;$	

4 (a) A suggestion to include one from:
to work out exactly where maximum was; to establish shape at top of curve;
(b) A suggestion to include two from:
enzymes involved;
denatured above $40^{\circ} \mathrm{C} /$ shape changes above $40^{\circ} \mathrm{C}$;
no longer fit in lock and key;

5 (a) (i) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ correct reactants; correct products; fully correct and balanced;
(ii) A definition to include:
a compound of carbon and hydrogen;
only;
(b) (i) An explanation to include:
if phlogiston lost, substances would weigh less; actually got an increase in weight;
(ii) An explanation to include:
substance had combined with something in the air; oxygen;

Paper 1P

1 (a) television remote control to infra-red;
loudspeaker to sound; sunbed to ultraviolet;
(b) sound; 1
(c) ultraviolet; 1
$8(\mathrm{~kW}) \times 0.5(\mathrm{~h}) \times 7(\mathrm{p} / \mathrm{kW} \mathrm{h})$;
$=28$;
pence / p;

3 (a) the inside of the house is warmer than the outside;
(b) through the walls;
(c) Any three from:
loft insulation;
cavity wall insulation;
double glazing;
draught excluder;
(d) An explanation to include:
reduces energy use / burning of fossils fuels / greenhouse effect;
saves the householder money;

4 (a) (i) alpha; 1
(ii) alpha and beta; 1
(iii) gamma;
(b) A description to include:

C-14 has more (particles); the extra particles are neutrons;

5 (a) 5 points plotted correctly;; [Allow 1 mark for 3 points plotted correctly] best straight line drawn;
(b) A description to include: the current increases; in a linear / uniform way;
(b) An explanation to include:
(at least) one object orbits Jupiter;
so all "heavenly bodies" cannot orbit the Earth;
plus 1 communication mark for presenting relevant information in a form that suits its purpose;
(c) to make others aware of his findings; 1

Syllabus 1536
 Science: Double Award B

Syllabus 1529
 Biology B

Syllabus 1539
Chemistry B

Syllabus 1549
Physics B

Specimen Paper 2

MARK SCHEME

First Examination Summer 2003

Success through qualifications

USING THE MARK SCHEME

1. This mark scheme gives you; * an idea of the type of response expected

* how individual marks are to be awarded
* the total mark for each question
* examples of responses that should not receive credit.

2. ; separates points for the award of each mark.
3. / means that the responses are alternatives and either answer should receive full credit.
4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
5. Phrases/words in bold indicate that the meaning of the phrase/word is essential to the answer.
6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

1. You must give a tick (in red) for every mark awarded. The tick must be placed on the script close to the answer. The mark awarded for part of a question should be written in the margin close to the sub-total.
2. The sub-total marks for a question should be added together and the total written and ringed at the end of the question then transferred to the front of the script.
3. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
4. Do not award marks for repetition of the stem of the question.
5. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

1. In calculations, full credit must be given for a bald, correct answer. If a numerical answer is incorrect, look at the working and award marks according to the mark scheme.
2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

QUALITY OF WRITTEN COMMUNICATION

This logo indicates where students will be assessed on their ability to:
\div present relevant information in a form that suits its purpose
\div ensure that spelling, punctuation and grammar are accurate, so that the meaning is clear \div use a suitable structure and style of writing.

Paper 2B

1
heart pumps blood to the lungs; alveolus where gas exchange takes place; cartilage keeps the air passage open;

2 (a) Any two from:
membrane;
cytoplasm;
nucleus;
correctly labelled - each for 1 mark
(b) cellulose;
(c) (i) longer roots;
more spread out / more branched;
(ii) Either better water / mineral / ion / nutrient absorption;
or firmer anchorage;

3 (a) oxygen;
carbon dioxide;
(b) (i) absorbs energy / withstands pressure;
(ii) allows outward / inward movement / diffusion;
(c) prevent backflow;

4 (a) 5 accurate plots for 2 marks
3 or 4 accurate plots for 1 mark curve drawn accurately;
(b) Kelly has: OR Peter has:
less of a rise; more rapid fall; more of a rise more rapid fall; slower fall; reaches resting rate; fails to reach resting point; plus 1 communication mark for using suitable structure and style of writing;

5 (a) stops photosynthesis / food / sugar production; so cannot respire / produce protein / grow;
(b) less damage to environment / animals / harmless to humans;
(c) better control over variables / isolated from the environment; so more reliable results;
(d) parts of the reef had no plants; 1
(e) to establish which one was effective / find the effect of each chemical / analysis with a view to synthesis;

Paper 2C

1 (a) fossil; 1
(b) crystal; 1

2 (a) An explanation to include three from: volcanoes gave out gases;
including water vapour / steam;
(as) Earth cooled;
water (vapour) condensed;
water became a liquid;
(b) An explanation to include:
photosynthesis / plants produce oxygen plus respiration / animals use oxygen; at the same rate;
(c) (i) the mouse died / it was cruel;
(ii) one fifth of air used by both / same amount of air used;
(iii) put both in together /
put mouse in air left by candle /
put candle in air left by mouse;

3 (a) atom;
compound;
property;
formula;
(b) Diagram to include 4 of: atom with nucleus; atom with 3 protons and 4 neutrons; protons and neutrons in nucleus;
atom with orbiting electrons; arranged 2 in first shell and 1 in second shell;

4 (a)
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad$ correct reactants;
correct products;
fully correct and balanced;
(b) (i) A description to include any three from:
moves;
floats on surface;
sodium disappears (do not accept sodium dissolves);
bubbles of gas;
sometimes catches fire;
(ii) hydrogen;
(iii) more reactive;
(c) (i) An explanation to include:
contains ions / charged particles;
these move in solution;
(ii) An explanation to include:
ions held by strong forces;
cannot move;

Paper 2P

1 (a) (i) they become compressed / smaller;
(ii) smallest spring circled; 1
(iii) it is the smallest / been compressed most;
(b) use stiffer springs; use more springs;
(c) arrows drawn vertically upwards;

2 (a) (i) Des;
(ii) graph for Des is the steepest line /

Des competed the race in the shortest time;
(b) (i) 20 s ;
(ii) speed $>\frac{\text { distance }}{\text { time }} /$ reference to gradient / slope of graph;
(iii) $\frac{100 \mathrm{~m}}{20 \mathrm{~s}}=5 ;(\mathrm{m} / \mathrm{s})$;

3 (a) the Earth / ground; 1
(b) it decreases;
(c) mark according to quality of answer: an argument either way with at least two supporting reasons for 3 marks
an argument with one supporting reason for 2 marks no argument but a simple point made for 1 mark

4 (a) $\quad \mathbf{S}$ at mid-ocean ridge;
(b) plate is moving; towards South America / away from mid-ocean ridge; plus a communication mark for presenting relevant information in a form that suits its purpose;

5 (a) B; $\quad 1$
(b) arrow pointing down on the right;
(c) arrows pointing in opposite directions; down on the left and up on the right;

6 (a) A description to include:
in A, some light reflected; some light refracted;
in C, all light reflected / total internal refraction;
(b) correct reflection at the first face; correct reflection at the second face and correct passage out of the prism;

Syllabus 1529 Biology B

Syllabus 1539
Chemistry B

Syllabus 1549
 Physics B

Specimen Paper 3

MARK SCHEME

First Examination Summer 2003

USING THE MARK SCHEME

1. This mark scheme gives you;* an idea of the type of response expected

* how individual marks are to be awarded
* the total mark for each question
* examples of responses that should not receive credit.

2. ; separates points for the award of each mark.
3. / means that the responses are alternatives and either answer should receive full credit.
4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
5. Phrases/words in bold indicate that the meaning of the phrase/word is essential to the answer.
6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

1. You must give a tick (in red) for every mark awarded. The tick must be placed on the script close to the answer. The mark awarded for part of a question should be written in the margin close to the sub-total.
2. The sub-total marks for a question should be added together and the total written and ringed at the end of the question then transferred to the front of the script.
3. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
4. Do not award marks for repetition of the stem of the question.
5. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

1. In calculations, full credit must be given for a bald, correct answer. If a numerical answer is incorrect, look at the working and award marks according to the mark scheme.
2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

QUALITY OF WRITTEN COMMUNICATION

This logo indicates where students will be assessed on their ability to:
\div present relevant information in a form that suits its purpose
\div ensure that spelling, punctuation and grammar are accurate, so that the meaning is clear
\div use a suitable structure and style of writing.

Paper 3B

1
in water;
malaria;
virus;
Total 4 marks
2 (a) A description to include two from: buds / \mathbf{X} grow on the cell / eq; they drop away/become independent / eq; is asexual/replicates the yeast / eq;
plus a communication mark for ensuring that text is legible and that spelling, punctuation and grammar are accurate, so that the meaning is clear;
(b) Penicillium is branched / has hyphae / is part of a mycelium/ reproduces by spores /
yeast is unicellular / has vacuoles / eq;
(c) (i) continue the species/spread to new areas / eq;
(ii) can travel further/move in the air / eq;

3 (a) can be used to inseminate more cows/eq;
(b) in a freezer/using liquid nitrogen/eq;
(c) An explanation to include:
thaws out the frozen semen/eq; so the sperms can swim/eq;
(d) press the plunger (and cut the seal)/eq;
(e) so that the semen enters the uterus/ can reach the fallopian tubes/can reach an egg/eq; 1 [Ignore so that semen goes to the right place / semen does not go to the wrong place]

Total 6 marks

4 (a) $99+108+102=309$;
$\frac{309}{3}=103 ; \quad$ [Allow ecf]
(b) more likely to represent the true value / eq;
(c) as temperature rises then so does the rate of fermentation / rate of fermentation is proportional to temperature / eq;
(d) decrease in rate / zero rate / eq; enzymes below optimum / inactive / reference to collision theory / eq;

Total 6 marks
5 (a) (i) sheep $\mathbf{A} /$ udder cell/eq;
(ii) A suggestion to include two from: cell would die with two nuclei/eq; otherwise it would have the genes of sheep \mathbf{B} / eq; so that the correct DNA would be accepted/eq;
(iii) sheep \mathbf{A};
(b) does not need sperm/
uses instruments/surrogate mother/eq;
(c) A suggestion to include two from:
there may be dangers/eq;
may be unethical/eq;
educates opinion/eq;
(d) can be used to produce useful chemicals/products/
large groups of animals with desired characteristics/eq;

Paper 3C

1 (a)

Either use safety glasses / wear apron / tie back hair;
or avoid contact with lead compounds / acid

1
(b) (i) C / sulfuric acid; 1
(ii) diagram of measuring cylinder / pipette / burette; label;
[Allow 1 mark for beaker]

2 (a) protective layer; can be coloured;
(b) aluminium oxide; $\quad 1$
(c) aluminium / graphite / (named) unreactive metal; 1
(d) (dilute) sulfuric acid; 1

Total 5 marks
3 (a) sulfur;
air;
sulfur dioxide;
sulfur dioxide;
sulfur trioxide;
(b) Any two from: making fertilisers; detergents; paints; plastics;

4 (a) sodium hydroxide (solution);
chloride;
barium chloride/nitrate (solution);

+ (dilute) hydrochloric/nitric acid;
white ppt;
(b) A description to include:
\div add sodium hydroxide (solution);
\div warm mixture;
\div ammonia gas evolved;
\div turns red litmus blue/
forms white smoke with hydrogen chloride/ has pungent smell;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear;

An outline to include:
Either fermentation;
glucose/sugar;
yeast/warm temperature/absence of air; distill mixture to concentrate ethanol;
or hydration of ethene;
ethene/steam;
high temperature; catalyst;

Total 4 marks
TOTAL MARK 60

Paper 3P

1 (a) increases; 1
(b) (i) 24 hrs; 1
(ii) 36 ;
million m; 2
[Allow ecf from part (b)(I)]
(iii) television / radio / telephone;
(c) A description to include three of:
as it slows, drawn inwards/radius of orbit decreases;
by pull of Earth;
enters atmosphere;
burns up;

2 (a) (i) electrons;
(ii) filament;
hot;
negative;
repelled;
(b) (i) B; 1
(ii) light; 1
(iii) brighter; 1

3 (a) (i) An explanation to include:
cable has electrical resistance;
energy lost as heat;
(ii) to replace lost energy/boost the signal/increase amplitude;
(iii) noise;
$\begin{array}{lll}\text { (b) (i) digital; } & 1 \\ \text { (ii) An explanation to include: } \\ \text { very short time interval between pulses; } \\ & \text { lots can be placed close together; }\end{array}$
(c) loudspeaker; 1

4 (a) An explanation to include:
particles moving;
collisions with walls/hitting walls;
force produced;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear;
(b) An explanation to include:
more collisions;
more particles present;

Syllabus 1535
 Science: Single Award B

Syllabus 1536
Science: Double Award B

Syllabus 1529
Biology B
Syllabus 1539
Chemistry B

Syllabus 1549
Physics B

Specimen Paper 4

MARK SCHEME

First Examination Summer 2003

USING THE MARK SCHEME

1. This mark scheme gives you; * an idea of the type of response expected

* how individual marks are to be awarded
* the total mark for each question
* examples of responses that should not receive credit.

2. ; separates points for the award of each mark.
3. / means that the responses are alternatives and either answer should receive full credit.
4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
5. Phrases/words in bold indicate that the meaning of the phrase/word is essential to the answer.
6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

1. You must give a tick (in red) for every mark awarded. The tick must be placed on the script close to the answer. The mark awarded for part of a question should be written in the margin close to the sub-total.
2. The sub-total marks for a question should be added together and the total written and ringed at the end of the question then transferred to the front of the script.
3. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
4. Do not award marks for repetition of the stem of the question.
5. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

1. In calculations, full credit must be given for a bald, correct answer. If a numerical answer is incorrect, look at the working and Award marks according to the mark scheme.
2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

QUALITY OF WRITTEN COMMUNICATION

This logo indicates where students will be assessed on their ability to:
\div present relevant information in a form that suits its purpose
\div ensure that spelling, punctuation and grammar are accurate, so that the meaning is clear \div use a suitable structure and style of writing.

Paper 4B

1 (a) (i) carbohydrase / amylase; 1
(ii) stomach; 1
(b) A description of two from: large surface area; thin (tissue); wall supplied with blood capillaries;2
(c) (i) colon shaded 1
(ii) An explanation to include two from:
less water in blood;
less sweat produced;
less heat lost;

2 (a) asexual / mitosis;
(b) prevent mutation; 1
(c) technique not fully developed / OWTTE 1
(d) Any one idea from:
to prevent others from accessing the information; to avoid publicity on failed work;
to avoid controversy / animal rights;
(e) An explanation to include two from:
to demonstrate / prove the technique works;
to spread knowledge / educate; to allow further research / developments;
plus 1 communication mark for ensuring that spelling, punctuation

3 An explanation to include:
less water in plasma/blood;
increased ADH / more ADH produced;
more water reabsorbed into blood;
urine volume decreases,

4 (a) An explanation to include three references from:
impulses / electrical signals;
neurones;
spinal cords / central nervous system; stimulation of muscle / effector;
(b) An explanation to include two from:
craving (must have more);
withdrawal symptoms (eg headache / depression);
tolerance / need increased dose for same effect;

5 (a) normal short 1
(b) $\mathrm{Nn} \quad \mathrm{nn}$; $\quad 1$
(c) $\quad \mathrm{N} \quad \mathrm{n} \quad \mathrm{n} \quad \mathrm{n}$;
combinations of genotypes, correctly derived;
if parental genotypes are incorrect, two marks max for Punn square/diagram

1
(d)
$\mathrm{Nn} \quad \mathrm{nn}$

6 cause plus effect to a max of 3 eg introduce speed limits, because less pollution at lower speeds; fit catalytic converters to reduce production of harmful gases; tune engines to make them more efficient; plus 1 communication mark for using a suitable structure and style of writing;

Paper 4C

1 (a) A suggestion to include one from:
to work out exactly where maximum was;
to establish shape at top of curve;
1
(b) An explanation to include two from:
enzymes involved;
denatured above $40^{\circ} \mathrm{C}$ / shape changes above $40^{\circ} \mathrm{C}$;
no longer fit in lock and key;

2 (a) (i) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ correct reactants; correct products; fully correct and balanced;
(ii) An explanation to include two of: a compound of carbon and hydrogen; only;
(b) (i) An explanation to include two of: if phlogiston lost would weigh less; actually got an increase in weight;
(ii) had combined with something in the air; oxygen;

3 (a) breaking of large hydrocarbon molecules; into smaller ones;
(b) containing (carbon - carbon) double bond;
(c) double bond breaks open;
joins other carbon atoms / forms long chains;

4 (a) bromine displaced; by chlorine; chlorine more reactive;3
(b) chlorine is a bleach; $\quad 1$
(c) same number of outer electrons; 7 outer electrons/ 1 short of noble gas configuration;2
(d)
$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3} \quad$ correct reactants; correct product; fully correct and balanced;

An explanation to include three from:
rate faster at a higher temperature;
higher temperature particles moving faster / have more energy;
increased number / frequency of collisions;
increased energy of collisions;
more successful collisions;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear;

Paper 4P

1 (a) 5 points plotted correctly;; [Allow 1 mark for 3 points plotted correctly] best straight line drawn;
(b) A description to include:
the current increases;
in a linear / uniform way;
(c) resistance $>\frac{\text { voltage }}{\text { current }}$ or $R>\frac{V}{I}$;
voltage $=2.4(\mathrm{~V})$ or correct reading from graph;
$R>\frac{2.4}{0.6}$; $=4.0 \Omega$;

2 (a) A description to include: C -14 has more (particles); the extra particles are neutrons;
(b) An explanation to include:
alpha particles cannot penetrate skin; they are absorbed in breathing; and can cause cell damage;

3 (a) Io goes round / Io orbits Jupiter / Jupiter has a moon;
(b) An explanation to include:
(at least) one object orbits Jupiter; so all "heavenly bodies" cannot orbit the Earth;
plus 1 communication mark for presenting relevant information in a form that suits its purpose;
(c) to make others aware of his findings;

4 (a) similarity: both transverse / travel at the same speed in a vacuum or air; difference: frequency / wavelength;
(b) (i) A description to include:
the waves travel in straight lines;
earth is curved / blocks the waves;
(ii) An explanation to include:
digital - only certain values allowed (or from diagram);
analogue - continuously variable / signal can have any value (or from diagram);
(5

5 (a) Overhead - cheaper installation / lower running costs / easy to detect OR repair faults;
Underground - less unsightly / more appropriate in cities where less
space / less prone to whether damage;
(b) An explanation to include three from:
water flow too slow / tide not high enough / small waves;
wind reliable;
large area needed for wind farm / lot of turbines needed;
few suitable sites / rivers;
plus 1 communication mark if the text is legible and that spelling,
punctuation and grammar are accurate, so that the meaning is clear;
(6 marks)

Syllabus 1536
 Science: Double Award B

Syllabus 1529 Biology B

Syllabus 1539
Chemistry B

Syllabus 1549
Physics B

Specimen Paper 5

MARK SCHEME

First Examination Summer 2003

USING THE MARK SCHEME

1. This mark scheme gives you; * an idea of the type of response expected

* how individual marks are to be awarded
* the total mark for each question
* examples of responses that should not receive credit.

2. ; separates points for the award of each mark.
3. / means that the responses are alternatives and either answer should receive full credit.
4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
5. Phrases/words in bold indicate that the meaning of the phrase/word is essential to the answer.
6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

1. You must give a tick (in red) for every mark awarded. The tick must be placed on the script close to the answer. The mark awarded for part of a question should be written in the margin close to the sub-total.
2. The sub-total marks for a question should be added together and the total written and ringed at the end of the question then transferred to the front of the script.
3. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
4. Do not award marks for repetition of the stem of the question.
5. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

1. In calculations, full credit must be given for a bald, correct answer. If a numerical answer is incorrect, look at the working and award marks according to the mark scheme.
2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

QUALITY OF WRITTEN COMMUNICATION

This logo indicates where students will be assessed on their ability to:
\div present relevant information in a form that suits its purpose
\div ensure that spelling, punctuation and grammar are accurate, so that the meaning is clear \div use a suitable structure and style of writing.

Paper 5B

1 (a) 5 accurate plots for 2 marks 3 or 4 accurate plots for 1 mark curve drawn accurately;
(b) Kelly has: less of a rise; more rapid fall; reaches resting rate; ORA each case for Peter plus 1 communication mark;

2 (a) stops photosynthesis / food / sugar production; so cannot respire / produce protein / grow;
(b) less damage to environment / animals / harmless to humans;
(c) better control over variables / isolated from the environment; so more reliable results;
(d) parts of the reef had no plants;
(e) to establish which one was effective / find the effect of each chemical / analysis with a view to synthesis;
(a) An explanation to include two from:
active transport / uptake; nitrate ions carried across (cell) membrane; [Reject nitrate ions just pass through membrane] against the concentration gradient; using energy;
(b) An explanation to include two from:
more oxygen in soil; rate of respiration increases; to provide more energy;
[Ignore references to photosynthesis and oxygen]

An explanation to include two from:
loss of home / habitat / protection / shelter / overcrowding / increased predation; fewer breeding sites; less food / restricted diet / disrupts food chain / web; no wildlife corridors to move along to other habitats; isolation; some species become endangered or extinct / types or numbers of plants / animals decrease; emigration to other areas;
[Ignore greenhouse effect and gas changes]

An explanation to include four from:
muscle of ventricles (or heart muscle) contracts;
correct reference to labelled valve or: a / v close;
correct reference to labelled valve or: semi-lunar open;
valve R/S (or both R and S) close(s) first;
forcing blood into arteries;
4
(4 marks)
6 (a) An explanation to include:
cf is caused by recessive alleles / is a recession condition;
parents are carriers / heterozygous;
(b) An explanation to include two of:
bacteria / micro-organisms are trapped in mucus;
but not brought up / swallowed / killed in stomach acid;
too much mucus hinders action of cilia;

Paper 5C

1 (a)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \quad 2 \mathrm{H}_{2} \mathrm{O} \quad \begin{aligned}
& \text { correct reactants; } \\
& \text { correct products; } \\
& \text { fully correct and balanced; }
\end{aligned}
$$

(b) (i) A description to include any three from: moves;
floats on surface; sodium disappears (do not accept sodium dissolves); bubbles of gas; sometimes catches fire;
(ii) hydrogen; 1
(iii) more reactive;
(c) (i) An explanation to include:
contains ions / charged particles;
these move in solution;
(ii) An explanation to include:

Either ions held by strong forces;
cannot move;
or not a metal;
therefore no free electrons;

2 (a) was based on experimental results;
(b) (i) liquids have particles which are close together /
thought that atom of same element could not combine;
(ii) $\quad \mathrm{H}_{\stackrel{\mathrm{x}}{\mathrm{x}}} \mathrm{H}$
one electron from each hydrogen atom; shared between atoms; each atom has access to two electrons; noble gas / helium electron configuration;
(c) atoms cannot be seen; 1
(7 marks)
3 (a) (i) yield reduced; 1
(ii) yield increased; 1
(b) $\quad \begin{aligned} & \text { large amounts of energy needed for electrolysis / } \\ & \text { electricity is expensive; }\end{aligned} \quad 1$
(c) $\quad 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad$ correct reactants; correct product; fully correct and balanced;

4 (a) An explanation to include two from: different rates of cooling; fast cooling small crystals / slow cooling large crystals; larger volume slower cooling; below ground slower cooling;
(b)
$\frac{3.57}{119}: \frac{0.96}{16} ;$
$0.03:$

$1 \quad$$\quad$| $0.06 ;$ |
| :---: |
| 1 |

hence empirical formula SnO_{2}

Paper 5P

1 (a) the earth / ground; 1
(b) it decreases; 1
(c) mark according to quality of answer: an argument either way with at least two supporting reasons for 3 marks
an argument with one supporting reason for 2 marks
no argument but a simple point made for 1 mark;;;
(5 marks)
2 (a) B;
(b) arrow pointing down;
(c) arrow pointing in opposite directions;
down on the left and up on the right;

3 (a) A description to include:
in A, some light reflected;
some light refracted;
in C. all light reflected / total internal refraction;
(b) correct reflection at the first face;
correct reflection at the second face and correct passage out of the prism;

4 (a) force $=350 \mathrm{~N}$;
direction is upwards;
(b) acceleration $>\frac{\text { force }}{\text { mass }}$;
$>\frac{350 \mathrm{~N}}{765 \mathrm{~kg}}$;
$=0.46 \mathrm{~m} / \mathrm{s}^{2}$;
(c) An explanation to include:
acceleration decreases;
resistive force increases; reducing the size of the unbalanced force;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear
(d) An explanation to include:
mass / downwards force decreases; causing an increase in acceleration;

5 (a) A suggestion to include:
electrons;
pass through tyres to earth;
[Allow aircraft is earthed for 1 mark]
(b)

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{I} \times \mathrm{t} / \mathrm{I}>\frac{\mathrm{Q}}{\mathrm{t}} ; \\
& >\frac{2.0 \propto 10^{4} \mathrm{C}}{0.5 \mathrm{~s}} ; \\
& =4 \times 10^{-4} \mathrm{~A} ;
\end{aligned}
$$

Syllabus 1529
Biology B
\section*{Syllabus 1539}
Chemistry B
Syllabus 1549
Physics B
\section*{Specimen Paper 6}
\section*{MARK SCHEME}

First Examination Summer 2003

USING THE MARK SCHEME

1. This mark scheme gives you;* an idea of the type of response expected

* how individual marks are to be awarded
* the total mark for each question
* examples of responses that should not receive credit.

2. ; separates points for the award of each mark.
3. / means that the responses are alternatives and either answer should receive full credit.
4. () means that a phrase/word is not essential for the award of the mark but helps the examiner to get the sense of the expected answer.
5. Phrases/words in bold indicate that the meaning of the phrase/word is essential to the answer.
6. OWTTE (or words to that effect) and eq (equivalent) indicate that valid alternative answers (which have not been specified) are acceptable.
7. 'Ignore' means that this answer is not worth a mark but does not negate an additional correct response.
8. 'Reject' means that the answer is wrong and negates any additional correct response for that specific mark.
9. ORA (or reverse argument) indicates that the complete reverse is also valid for the award of marks.
10. ecf (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

MARKING

1. You must give a tick (in red) for every mark awarded. The tick must be placed on the script close to the answer. The mark awarded for part of a question should be written in the margin close to the sub-total.
2. The sub-total marks for a question should be added together and the total written and ringed at the end of the question then transferred to the front of the script.
3. Suggestion/explanation questions should be marked correct even when the suggestion is contained within the explanation.
4. Do not award marks for repetition of the stem of the question.
5. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct scientific context.

AMPLIFICATION

1. In calculations, full credit must be given for a bald, correct answer. If a numerical answer is incorrect, look at the working and award marks according to the mark scheme.
2. Consequential marking should be used in calculations. This is where a candidate's working is correct but is based upon a previous error. When consequential marks have been awarded write "ecf" next to the ticks.
3. If candidates use the mole in calculations they must be awarded full marks for a correct answer even though the term may not be on the syllabus at their level.
4. If candidates use chemical formulae instead of chemical names, credit can only be given if the formulae are correct.

QUALITY OF WRITTEN COMMUNICATION

This logo indicates where students will be assessed on their ability to:
\div present relevant information in a form that suits its purpose
\div ensure that spelling, punctuation and grammar are accurate, so that the meaning is clear
\div use a suitable structure and style of writing.

Paper 6B

1 (a) $99+108+102=309$;

$$
\begin{equation*}
\frac{309}{3}=103 ; \quad[\text { Allow ecf }] \tag{2}
\end{equation*}
$$

(b) more likely to represent the true value/eq;
(c) as temperature rises then so does the rate of fermentation/ rate of fermentation is proportional to temperature/eq;
(d) decrease in rate/zero rate/eq; enzymes below optimum/inactive/ reference to collision theory/eq;

Total 6 marks
2 (a) (i) sheep $\mathbf{A} /$ udder cell/eq;
(ii) A suggestion to include two from:
cell would die with two nuclei/eq;
otherwise it would have the genes of sheep \mathbf{B} / eq;
so that the correct DNA would be accepted/eq;
(iii sheep \mathbf{A};
)
(b) does not need sperm / uses instruments / surrogate mother / eq;
(c) A suggestion to include two from:
there may be dangers/eq;
may be unethical/eq;
educates opinion/eq;
(d) can be used to produce useful chemicals / products / large groups of animals with desired characteristics / eq;

Total 8 marks
3 (a) $50-55$ weeks (accept within range); 1
(b) A description to include four from:
some proteins are antigens/eq;
B lymphocytes;
creation of plasma cells;
which secrete the antibodies/eq;
(c) primary has less antibodies/
secondary produces more antibodies/eq;
secondary response antibodies decrease
more slowly or last longer/eq;
primary response slower/secondary response faster/eq;
(d) otherwise it could cause disease/eq;

6 (a) gene is transferred/eq; to different species/soya (bean) plant/eq; 2
(b) An explanation to include three from:
\div plant is not killed when weedkiller used/eq;
\div less competition from weeds/eq;
\div more light for crop/eq;
\div more water for crop/eq;
\div more minerals for crop/eq;
\div so more photosynthesis/eq;
plus 1 communication mark for presenting relevant information in a form that suits its purpose;
(c) A suggestion to include:
\div could pass on weedkiller to consumer/could be toxic/eq;
\div could pass on resistance to weeds/eq;

Paper 6C

1 (a) sodium hydroxide (solution); chloride;
barium chloride/nitrate (solution); + (dilute) hydrochloric/nitric acid; white ppt;
(b) A description to include:
add sodium hydroxide (solution);
warm mixture;
ammonia gas evolved;
turns red litmus blue / has pungent smell /;
forms white smoke with hydrogen chloride;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear;

An outline to include:
Either fermentation; glucose/sugar; yeast/warm temperature/absence of air; distill mixture to concentrate ethanol;
or hydration of ethene; ethene/steam; high temperature; catalyst;

3 (a)
I mol $\mathrm{ZnS} \longrightarrow 1 \mathrm{~mol} \mathrm{SO}_{2}$;
ZnS = 97;
$\mathrm{Mol} \mathrm{ZnS}=\frac{48.5 \propto 10^{3}}{97}=500$;
Vol of $\mathrm{SO}_{2} \quad 500 \propto 24=12000 \mathrm{dm}^{3}$;
(b) Higher Pressures - expensive to maintain/safety risks;

Lower temperatures - slow;

4 (a) (i) methanol;

(ii) they all contain an $\mathrm{O}-$ Hgroup/eq;
(iii) eg boiling point increases as number of carbon atoms increases;;
(b) eg they all react when heated with ethanoic acid; to form sweet smelling;
esters;
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} . \mathrm{OC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$;

Paper 6P

1 (a) (i) An explanation to include:
cable has electrical resistance;
energy lost as heat;
(ii) to replace lost energy/boost the signal/increase amplitude;
(iii noise;
)
(b) (i) digital;
(ii) An explanation to include:
very short time interval between pulses;
lots can be placed close together;
(c) loudspeaker; 1

Total 8 marks
2 (a) An explanation to include:
particles moving;
collisions with walls/hitting walls;
force produced;
plus 1 communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear;
(b) An explanation to include:
more collisions;
more particles present;

3 (a) An explanation to include:
active - acts on received signal / produces a
passive $\quad-$ does not change it/just reflects i
(b) An explanation to include two from:
gravitational pull;
keeps satellite in orbit;
responsible for its changing direction;
(c) (i) An explanation to include:
wave diffracted /spread out by dish;
wavelength to dish size ratio determines amount of diffraction/spreading;
less energy per m^{2} if spread out;

4 (a) An outline to include:
β particles fired at gold foil; angles of scatter measured;
a few scattered through large angles;
plus 1 communication mark for using a suitable structure and style of writing;
(b) An explanation to include:
cannot be divided/ broken down further; electrons;
(c) (i) A suggestion to include:
neutrons have no charge/cannot be deflected by E/M fields;
(difficult to detect) travel though matter easily;
(ii) protons and neutrons contain 3 quarks; different combinations of up and down quarks;

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

Syll. No. 1536 Paper No. 1B
Maximum mark for Paper 90
Foundation Tier
Page 1 of 3
23 SEPTEMBER 2000

YEAR of EXAM 2003

Q	Spec.Ref.		ssessmen	Objective							Equ"		ended	Prose
				HO2	A03	Mark			aspects	ans.	\&			
							Low	Stand.		Object.	Calc".			
												= 2	>2	Comm
		Recall	Other	Applic ${ }^{\text {" }}$	Inv.Sc.		G-E	D-C						
		12-14	41-45	27-36	0-7	90	45-54	36-45	\times	/ 42	SeeCQC	~ 18	-5	~ 3
		aper 1												
1	1.09	1	2			3	3			3				
2 (a)	2.06	1					1		\times	1				
(b)	2.09		2				2					2		
(c)	2.10		2			5	2			2				
3 (a)	2.44	1					1		\times	1				
(b) (i)	2.45			1			1		\times	1				
(ii)	2.45			1		3	1		\times	1				
4 (a)	1.23		1				1			1				
(b)	1.27		2				2					2		
(c)	1.23	2				5	2					2		
5 (a) (i)	1.02	1						1		1				
(ii)	1.01		1					1		1				
(b)	1.03		2					2		2				
(c) (i)	1.01			1				1		1				
(ii)	1.23			2		7		2				2		
6 (a)	2.27	1						1		1				
(b)	2.26		1					1		1				
(c)	2.27		1					1		1				
(d)	2.27			1				1		1				
(e)	2.27				3	7		3				2		1
		7	14	6	3	30	16	14		19		10		1

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

Syll. No. 1536 Paper No. 1C
Maximum mark for Paper 90

YEAR of EXAM 2003

Q	Spec.Ref.		Asessmen	Objective		Tota				Short	Equ"		nde	Prose
				AO2	A03	Mark			aspects	ans.	\&			
							Low	Stand.		Object.	Calc".			
												$=2$	>2	Comm
		Recall	Other	Applic"	Inv.Sc.		G-E	D-C						
		12-14	41-45	27-36	0-7	90	45-54	36-45	\times	/ 42	SeeCQC	~ 18	\sim	~ 3
		Paper												
1 (a)	3.02/34/5		4	2			6			6				
(b)	3.11/13	2	1			9	3			3				
2 (a)	4.20			3			3		\times	3				
(b)	4.01	1	2			6	3						3	
3	3.17		1	2		3	3			3				
4 (a)	3.21				1			1		1				
(b)	3.21	1	1			3		2				2		
$5 \text { (a) }$ (i)	4.08			3				3			3			
(ii)	4.02	1	1					2				2		
(b) (i)	4.08			2				2				2		
(ii)	4.08		2			9		2				2		
	tals	5	12	12	1	30	18	12		16	3	8	3	

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

Syll. No. 1536 Paper No. 1P
Maximum mark for Paper 90
YEAR of EXAM 2003

Q	Spec.Ref.	Assessment Objective				$\begin{array}{\|l\|l\|} \hline \text { Total } \\ \text { Mark } \end{array}$	$\begin{aligned} & \hline \text { Level of } \\ & \text { demand } \end{aligned}$		$\begin{array}{\|c} \hline \begin{array}{c} \text { SocEET } \\ \text { aspects } \end{array} \end{array}$	$\begin{gathered} \hline \text { Short } \\ \text { ans./ } \\ \text { Object. } \end{gathered}$	Equ" Calc".	Extended Prose		
		$\begin{gathered} \hline \text { AO1 } \\ \hline \text { K\&U } \\ \hline \end{gathered}$		AO2	A03									
				Low			Stand.	= 2					Comm	
		53-59										>2		
		Recall	Other	Applic $^{\text {² }}$	Inv.Sc.		G-E	D-C						
		12-14	41-45	27-36	0-7	90	45-54	36-45	\times	/ 42	$\mathrm{secCQ}_{\mathrm{C}}$	~ 18	-5	~ 3
Pape														
1 (a)	6.08/13		3				3		\times	3				
(b)	6.03		1				1			1				
(c)	6.04	1				5	1			1				
2	5.20			3		3	3		\times		3			
3 (a)	5.26		1				1		\times	1				
(b)	5.26			1			1		\times	1				
(c)	5.27	3					3		\times	3				
(d)	5.27		2			7	2		\times			2		
4 (a)	6.30/31	1	2				3			3				
(b)	6.28/27		2			5		2				2		
5(a)	5.05			3		3		3		3				
(b)	5.05		2			2		2			2			
6 (a)	6.16			1				1		1				
(b)	6.16		2	1				3				2		1
(c)	6.16		1			5		1		1				
Totals		5	16	9	0	30	18	12		15	6	8	0	1
$\text { Totals - Paper } 1$		17	42	27	4	90	52	38		50	9	24	3	2

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

Syll. No. 1536 Paper No. 2B
Maximum mark for Paper 90

Foundation Tier
Page 1 of 3

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

Syll. No. 1536 Paper No. 2C
Maximum mark for Paper 90

Foundation Tier
Page 2 of 3

23 SEPTEMBER 2000
YEAR of EXAM 2003

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

Syll. No. 1536 Paper No. 2P
Maximum mark for Paper 90
YEAR of EXAM 2003

SPECIFICATION GRID
GCSE SCIENCE B
Syll. No. 1529/39/49 Paper 3
Maximum mark for Paper 90
YEAR of EXAM 2003

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

SYLL. NO. 1536 PAPER NO. 4 B
HIGHER TIER
23 SEPTEMBER 2000
Maximum mark for Paper 90
Page 1 of 3
YEAR of EXAM 2003

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

SYLL. NO. 1536 PAPER NO. 4 C
HIGHER TIER
23 SEPTEMBER 2000
Maximum mark for Paper 90
Page 2 of 3

YEAR of EXAM 2003

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

SYLL. NO. 1536 PAPER NO. 4P
Maximum mark for Paper 90
YEAR of EXAM 2003

Q	Spec.Ref.	Assessment Objective				Total Mark	Level of demand		SocEET aspects	Short ans./ Object.	$\begin{gathered} \hline \text { Equ" }^{\prime} \\ \& \\ \text { Calc }^{\mathrm{n} .} \end{gathered}$	Extended Prose		
Q		AO1		AO2	AO3									
		K \& U					Stand.	High.						
												$=2$	>2	Co
		Recall	Other	Applic ${ }^{\text {n }}$	Inv.Sc.		C-D	B-A*						
		12-14	41-45	27-36	0-7	90	36-45	45-54	\times	/ 42	seeCQC	~ 14	~ 9	~ 4
Paper 4P														
(a)														
(b)	12.32/33		2	1		5	3						3	
2 (a)	11.05			3			3				3			
(b)	11.05		2				2					2		
(c)	11.06	1		2		8		3			3			
$\begin{gathered} 3 \\ (a) \end{gathered}$	12.16			1			1			1				
(b)	12.16		2	1			3					2		1
(c)	12.16		1			5	1			1				
4 (a)	11.22		2					2	\times	2				
(b)	11.24		1	3		6		4	\times				4	
$\begin{gathered} 5 \\ (a) \end{gathered}$	12.03/04	2						2	\times	2				
(b) (i)	12.08		2					2	\times			2		
(ii)	12.07	1	1			6		2	\times			2		
Total		5	15	11		30	15	15		6	6	10	7	1
Total Paper 4		12	46	28	4	90	40	50		22	12	29	27	4

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B
SYLL. NO. 1536 PAPER NO. 5 HIGHER TIER
23 SEPTEMBER 2000
Maximum mark for Paper 90
Page 1 of 3
YEAR of EXAM 2003

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

SYLL. NO. 1536 PAPER NO. 5
Maximum mark for Paper 90
YEAR of EXAM 2003

Q	Spec.Ref.		Assessmen	Objectiv		Total			SoceET	Short	Equ"		ded	
				AO2	AO3	Mark			aspects	ans./	\&			
							Stand.	High.		Object.	Calc".			
												$=2$	>2	Co
		Recall	Other	Applic ${ }^{\text {" }}$	Inv.Sc.		C-D	B-A*						
		12-14	41-45	27-36	0-7	90	36-45	45-54	\times	142	seeCQC	~ 14	~9	~ 4
		Paper												
1 (a)	10.06		1	2			3				3			
(b)	9.18/19	2	2	1			5			2			3	
(c) (i)	10.12		2				2					2		
(ii)	10.12		2			12	2					2		
2 (a)	10.01			1				1		1				
(b) (i)	10.01		1					1		1				
(ii)	10.14	1	2	1				4		4				
(c)	10.01		1			7		1		1				
3 (a)	9.27		2					2	\times	2				
(b)	9.999.10			1				1	\times	1				
(c)	9.29		1	2		6		3			3			
								3						
4 (a)	9.41		2				2					2		
(b)	10.44			3		5		3			3			
		3	16	11		30	14	16		12	9	6	3	

SPECIFICATION GRID Specimen Paper

GCSE SCIENCE B

SYLL. NO. 1536 PAPER NO. 5
Maximum mark for Paper 90
YEAR of EXAM 2003

SPECIFICATION GRID

GCSE SCIENCE B
Syll. No. 1529/39/49 Paper 6
Syll. No. 1529/39/49 Paper 6
Maximum mark for Paper 90 YEAR of EXAM 2003

Specimen Paper

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Order Code UG 009365
Autumn 2000
For more information on Edexcel qualifications please contact our
Customer Response Centre on 08702409800
or email: enquiries@edexcel.org.uk
or visit our website: www.edexcel.org.uk

