GCS:

Science: Physics

Summer 2010

Mark Schemes

NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE)

 MARK SCHEMES (2010)

 MARK SCHEMES (2010)}

Foreword

Introduction

Mark Schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes teachers and students will be able to see what examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of 16- and 18-year-old students in schools and colleges. The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes therefore are regarded as a part of an integral process which begins with the setting of questions and ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. What is published represents this final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example, where there is no absolute correct response - all teachers will be familiar with making such judgements.

The Council hopes that the mark schemes will be viewed and used in a constructive way as a further support to the teaching and learning processes.

CONTENTS

Page

Foundation Tier

Paper $1 \quad 1$
Paper $2 \rightarrow 9$
Higher Tier
Paper $1 \quad 17$
Paper $2 \quad 25$

General Certificate of Secondary Education 2010

Science: Physics

Paper 1
Foundation Tier
[G7602]

FRIDAY 28 MAY, MORNING

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.

1
(a) (i) $\left[\mathrm{wt}=\mathrm{mg}\right.$ or $\mathrm{wt}=\frac{100}{1000} \times 10[1] /[2]$ force $=1(\mathrm{~N})[2] /[2]$
(ii) 150 mm
(iii) 200 g gives an ext $200-150=50 \mathrm{~mm}$ 100 g gives an ext $\frac{50}{2}=25 \mathrm{~mm}$
(iv) Evidence on graph of attempt to find load at 250 mm

Mass $=400(\mathrm{~g})$
(v) The extension is proportional to the load

Provided the elastic limit is not exceeded
(vi) Straight line from 600 g to 800 g

Upward curve from 800 g to 1000 g [1]
(b) (i) Weight or gravity or drag
(ii) The rocket is speeding up
(c) (i) Arrow labelled F from satellite to centre of Earth
(ii) The gravitational pull of the Earth or simply gravity
(iii) Arrow labelled V at a tangent to orbit, clockwise. (both needed)
(iv) Velocity is a vector, speed is not

Or velocity depends on direction, speed does not
QWC
(v) $\begin{array}{rlr}\text { Speed } & =\text { distance/time } & {[1]} \\ & =40000 / 1.5 & {[1]} \\ & =26667(\mathrm{~km} / \mathrm{h}) & {[1]}\end{array}$

$$
=26667(\mathrm{~km} / \mathrm{h})
$$

(a) (i) KINETIC energy in the wind [1]
KINETIC energy in moving rotor blades [1]ELECTRICAL output energy from the turbine
(ii) Noise (sound) [1]
Heat [1]
(iii) Lack of wind/unreliable [1]
(iv) 30\% of input energy appears as electrical energy
or
30% of input energy appears as useful output energy or
Useful output energy/total input energy $=0.3$
(b) (i) Burning of fossil fuels/specific examples - using motor cars, etc. [1]
Release of carbon dioxide [1]
(ii) It does not release carbon dioxide [1]
(iii) It is radioactive [1]
(iv) Uranium or plutonium[1]
(v) There are limited reserves of uranium
Or
It cannot be replaced in a human lifetime! [1]
(c) (i) Rectangle - where diagonals meet (judge by eye) [1]
Centre of circle [1]
(ii) About the centre but must be on the line [1]
(iii) Mark the current line
Suspend from a different point [2]
Re-attach plumb line and mark it - any 2 from theseCoM where lines meet - must be present for all 3 marks[1]
]
AVAILABLE]

3 (a) (i) X-rays, Ultraviolet, Infra-red, Radio ([1] each)
(ii) Travel in a vacuum or all travel at the same speed in a vacuum
(b) (i) Gamma (γ) rays
(ii) Microwaves
(iii) Ultraviolet
(c) (i) Luminous - emit light
(ii) example - Sun/stars/flames/filament bulbs/anything with potential to emit light
(iii) Non-luminous - do not emit their own light/scatter/reflect light or seen by reflecting light
(iv) example - Moon/Earth/pen/book etc
(d) (i) Normals at A and B (at 90° to mirror by eye)
(ii) Incident rays from candle flame to points of reflection at mirror. (Both must come from same point between bottom of bulb or right side.)
(iii) Arrow(s) on incident rays going towards mirror
(e) (i) 50°

No ECF to (ii)
(ii) 50°
(iii) $\left.\begin{array}{l}\text { Evidence } \\ \text { Recognition }\end{array}\right\}$ that incident ray strikes M_{2} at $90^{\circ}[1] /[2]$

Angle of incidence at M_{2} is 0°
(iv) Reflected ray back along path of incidence [1]

4 (a) (i) No of protons $=$ no of electrons/
Equal amounts of +ve and -ve charge
(ii) Negative
(iii) Rod is -ve [1] cloth is +ve [1]
(b) (i) Ammeter
(ii) Amp or ampere
(iii) Current increases if lamp brightens

Current decreases if lamp dims
Current constant if brightness unchanged (Any 2)
(iv) + to left of the battery
(v) Arrow clockwise
(c) (i) In series
(ii) Equal to
(d) (i) V in parallel with A using - (V)
(ii) 0.35
(iii) 1.4
(iv) $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}[1] /[2]$
$\mathrm{V}=2.8[2] /[2]$
ECF from (iii) should be $\quad \mathrm{V}=1.4+$ Answer to (iii) correctly calculated [2]/[2]
(v) $\begin{aligned} \mathrm{R} & =\mathrm{V} / \mathrm{I} \\ & =\frac{2.8}{0.2} \quad \text { ECF from (iv) } \\ & =14\end{aligned}$

]

[1]

5 (a) (i) electron, proton, neutron ([1] each)
(ii) proton, neutron (both needed) mention of electron [0]/[1]
(iii) 3 protons and 4 neutrons
(ignore references to electrons)
(b) (i) an electron
(ii) the nucleus
(iii) alpha
gamma
(iv) alpha
(c) (i) lead
(ii) $\left.\mathrm{To} \begin{array}{l}\text { reduce } \\ \text { absorb }\end{array}\right\}$ the radiation/protect from radiation/safer [1]

To $\left.\begin{array}{l}\text { produce } \\ \text { direct }\end{array}\right\}$ a narrow beam of beta particles
(iii) The user is further from the source

To reduce contact/exposure/avoid damage to skin
(iv) Remove source and read the detector or measure background [1] Put Al sheet between source and detector/in front of detector or source [1]
Take a reading on detector [1]
Add extra sheets of/increase thickness of Al [1]
UNTIL READING (if mark for reading not given yet) [1]
IS CONSTANT or EQUALS BACKGROUND or is ZERO [1]
This thickness equals the range [1]
Any five points [(Max [5])

General Certificate of Secondary Education 2010

Science: Physics

Paper 2
Foundation Tier
[G7603]

WEDNESDAY 16 JUNE, MORNING

MARK
 SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.
(a) Mass in kilograms/grams kg, g
(b) (i) CoG marked with an X at the centre of beam
on or in the beam
(ii) The centre of mass or centre of gravity
(iii) $\mathrm{P}=\mathrm{F} / \mathrm{A}$

$$
\begin{equation*}
=20000 / 8 \tag{1}
\end{equation*}
$$

$=2500$
Pa or $\mathrm{N} / \mathrm{m}^{2}$
(iv) Pivot P marked as the RH end
(v) Moment $=$ force \times distance $($ from pivot $)$

$$
\begin{aligned}
& =12500 \times(5-1) \\
& =50000(\mathrm{ecf} \text { for position of pivot })
\end{aligned}
$$

Nm[1]
(c) (i) $24 \mathrm{~cm}^{3}$
(ii) 28-24
$=4 \mathrm{~cm}^{3}$
(iii) $\mathrm{D}=\mathrm{M} / \mathrm{V}$

$$
\begin{aligned}
& =42 / 4(\text { ecf from (ii) for volume }) \\
& =10.5
\end{aligned}
$$

(iv) Silver ecf from (iii)
(a) (i) Kinetic energy is CONSTANT
(ii) Kinetic energy is INCREASING
(iii) CHEMICAL
(iv) $8 \times 25 \quad$ or $w=f \times d$
$=200(\mathrm{~J})$
[1]
(v) 200 ecf from (iv) for work
W [1]
[1]
(b) Any four from:

Known weight or known mass or use of newtonmeter or balance to find it
Two points a measured distance apart/length of string
Switch on motor
Time to move between points/measured with stopclock
Repeat or take average
Plus:
Power $=\frac{\text { work done }}{\text { time taken }}$ or Power $=$ weight \times speed $($ essential for full marks $)$ [5]
Quality of written communication
(c) (i) Air IN at bottom

Air OUT at the top
(ii) Liquid
(d) (i) Upward curve or line starting at same level
(ii) Collisions
(e) (i) Metals expand by different amounts

(a) (i) Transverse [1]
Longitudinal [1]
(ii) Energy, KE, PE or mechanical energy
(iii) Vibrates/oscillates[1]Perpendicular to the direction of energy transfer/motionof wave[1]moves up or down [1]moves up and down [2][2]
(iv) 0.3 (m)
(v) 0.8 (m)
(vi) $\mathrm{f}=$ no. of vibrations/time taken (or $\mathrm{f}=24 / 8$ or equivalent) [1]$\mathrm{f}=3(\mathrm{~Hz})$[1]$\mathrm{f}=\frac{\mathrm{I}}{\mathrm{T}}$ give [1]
(vii) $\mathrm{v}=\mathrm{f} \lambda$ [1]
$\mathrm{v}=3 \times 0.8$ ecf from (v) for wavelength and (vi) for frequency [1]
$\mathrm{v}=2.4(\mathrm{~m} / \mathrm{s}) \quad$ [1]
(b) (i) 1. Hammer seen striking gong or bell still working [1]
2. No sound heard from bell or fainter sound [1]
(ii) Sound cannot travel in a vacuum or sound needs particles for propagation or equivalent
or light can travel through a vacuum[1]
(iii) Ultrasound/ultrasonic[1]
(c) (i) One wave shown over the four grid squares [1]
of greater the amplitude as before [1] [2]
(ii) Two waves shown over the four grid squares [1]
Same amplitude [1][2]
[2]20

4 (a) (i) Close the switch
(ii) Less turns

Remove the iron nail
[1]
Use one cell [0]
(iii) So that current flows around the nail
(iv) It retains its magnetism
(b) (i) Variable resistor/rheostat/variable power supply
(ii) 4 points plotted $\pm \frac{1}{2}$ smallest square
joining points [0] max [0]
Best fit line
Through 0, $0 \quad \pm 1$ square
(iii) 10 clips
1.2 A intersects line at approx 10.5 clips or look at intercept on candidate's graph Answer must be integer (lower one)
(c) (i) Battery, switch
in series with coil - complete circuit
Coil wound around soft iron core
essential point before further credit
Ignore ammeters/voltmeter - other additional components [-1]
(ii) Iron steel [0] and no further mark
Is attracted when electromagnet switched on
[1]
Is an electromagnet/temporary magnetism/magnetic
(iii) X and Y both correct
(iv) An insulator (may be a named insulator)
dependent marking
Otherwise device at XY always ON, there is a short circuit [1]
Second circuit always on
(d) (5) $\begin{array}{llllll}3 & 4 & 6 & 2 & 1 \\ & 3 & 4 & 2 & 1 & 6\end{array}$
[1]

5 (a) (i) A collection of stars
(ii) A galaxy
(b) (i) Neptune
(ii) Mercury
(iii) Venus and Mercury
(iv) Mars and Jupiter
(c) (i) Moon
(ii) Communications/spying/navigation/research any two [2]
(d) (i) 365 days or $365 \frac{1}{4}$ days
(ii) A: summer
[1]
C: winter
[1]
(iii) Line $\left\{\begin{array}{l}\text { close to } \\ \text { through }\end{array}\right\}$ the earth's centre inclined to the vertical consistent with answer to (ii)
(iv) Area to left of vertical terminator shaded
Total

Rewarding Learning

General Certificate of Secondary Education 2010

Science: Physics

Paper 1
Higher Tier
[G7604]

FRIDAY 28 MAY, MORNING

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.

1 (a) (i) The straight line does not pass through 0,0 or
The length does not double when the mass doubles
(ii) From graph 200 g gives an extension of $200-150=50$ 100 g gives an extension of 25 mm
$\left.\begin{array}{l}\text { (iii) Straight line from } 600 \mathrm{~g} \text { to } 800 \mathrm{~g} \\ \text { Upward curve from } 800 \mathrm{~g} \text { to } 1000 \mathrm{~g}\end{array}\right\}$ independent
(b) (i) Speed = distance/time

$$
\begin{aligned}
& =40000 / 1.5 \\
& =26667(\mathrm{~km} / \mathrm{h})
\end{aligned}
$$

(ii) Momentum $=$ mass \times velocity (speed)
$26667 \mathrm{~km} / \mathrm{hr}=7407.5 \mathrm{~m} / \mathrm{s}$
allow ecf for speed from (b)(i)
momentum $=150 \times 7407.5$

$$
=1111125 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

(iii) Velocity is a vector (speed is not) or

Velocity depends on direction (speed does not) or Direction is changing

Quality of written communication
(iv) Zero, 0
(c) (i) The centripetal force on the polar satellite is GREATER

Because it is nearer than the geostationary one
(and has the same mass)
(ii) Photographing the Earth
(iii) Communications or TV or weather monitoring
(d) (i) $\mathrm{W}=\mathrm{mg}$ or

Weight of rocket $=\underline{140000 \times 10}=1400000 \mathrm{~N}$
Resultant force $=3000000-1400000$
$=1600000$
[1]
(ii) $\mathrm{F}=$ ma or equivalent [1]
$1600000=140000 \times a$
$\mathrm{A}=1600000 / 140000=11.4\left(\mathrm{~m} / \mathrm{s}^{2}\right) \quad$ allow ECF from (i) for force only [1]
(iii) The acceleration increases

An increase in speed is not acceptable

2 (a) (i) 30\% of input energy appears as electrical energy or 30% of input energy appears as useful output energy or useful output energy/total input energy $=0.3$
(ii) Electrical energy $=0.3 \times 18$

$$
\begin{equation*}
=5.4 \mathrm{~J} \tag{1}
\end{equation*}
$$

(iii) Output power $=5000 \times 5.4$

$$
=27000 \text { allow ECF from (ii) }
$$

w
(b) (i) No release of carbon dioxide/greenhouse gases
(ii) The waste is radioactive/emits radiation (not just toxic/dangerous)
It has to be stored for a long time or buried for a long time
(iii) Small amount or less of uranium compared with coal/oil
(iv) Decommissioning means to close down (so that there is no threat to the environment or people)
Disposal of the radioactive materials/requires special measures/specialist personnel/special equipment
(c) (i) The momentum before a collision/explosion equals the momentum after a collision/explosion
(ii) Momentum before $=$ momentum after
(no marks for the above already credited in part (i)
$500 \times 1.5(+0)=750 \times \mathrm{V}$
$\mathrm{V}=750 / 750=1(\mathrm{~m} / \mathrm{s})$
(d) (i) The force creates a pressure or liquids incompressible

This pressure is transmitted (through the oil/liquid)
(ii) Pressure at $\mathrm{X}=$ pressure at the large platform or $\mathrm{P}=\mathrm{F} / \mathrm{A}$
$=10000 / 400$

$$
\begin{align*}
\text { or } 25 & =\mathrm{F} / 10 \tag{1}\\
\mathrm{~F} & =250(\mathrm{~N}) \tag{2}
\end{align*}
$$

[1]

3 (a) (i) Luminous objects - emit (their own) light
(ii) Example - sun, stars, flames, torch, bulb, (incandescent) lamps etc. [1]
(iii) Non-luminous objects do not produce light object/scatter/reflect light (incident upon them)
(iv) Example - moon, Earth, book, pencil, pen etc
(b) (i) Normals at A and B (at 90° to mirror by eye)
(ii) Incident rays from bulb to points of reflection at mirror must both come from same point between bottom of bulb and right side
(iii) Arrow(s) on incident rays going towards mirror
(c) (i) 50°
(ii) 50° no ECF to (ii)
(iii) Recognition that incident ray strikes M_{2} at 90° on diagram [1]

Angle of incidence at M_{2} is $0^{\circ} \quad$ [1]
(iv) Reflected ray back along path of incidence
(d) (i) Distance between principal focus/focal point and (centre of) lens is 2 cm
(ii) Ray parallel to PA refracted through F
(to within $\pm \frac{1}{2}$ square)
Ray through optical centre passes through lens without refraction
Ray through F refracts parallel to PA
(iii) $6 \mathrm{~cm}(\pm 0.3 \mathrm{~cm})$ i.e. 5.7 to 6.3
$1 \frac{1}{2}$ divisions
(iv) real inverted magnified ([1] for each)
(e) (i) Light is travelling TOWARDS less (optically) dense medium
Angle of incidence (at boundary) greater than critical angle [1]
(ii) When angle of incidence in glass equals critical angle (42°), angle of refraction in air is 90° or
At angles of incidence in glass less than the critical angle, light is refracted or at angles of incidence greater than the critical angle light is totally internally reflected.
(iii) Medical: Endoscopy or laparoscopy or key-hole surgery or similar
Non-medical: Communications or telephony or cable TV or similar, broadband, interact, Christmas tree lights

4 (a) (i) No. of protons $=$ no. of electrons/
Equal amounts of +ve and -ve charge
(ii) Rod is -ve [1] cloth is +ve [1]
(b) (i) V in parallel with A using - (V)
(ii) + to left of the voltmeter
(iii) $(0.2+0.15=0.35$
(iv) 1.4
(vi) $\mathrm{R}=\mathrm{V} / \mathrm{I}$

$$
=\frac{2.8}{0.2} \longleftarrow \text { ECF from (iv) }
$$

(v) $\mathrm{V}=\mathrm{V} 1+\mathrm{V} 2$
$\mathrm{V}=2.8 \longrightarrow 1.4+$ answer to (iv)
(c) (i) $1 / \mathrm{R}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$

$$
=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}
$$

ECF for resistance

$$
\mathrm{R}=2
$$

(ii) $\begin{array}{ll}\mathrm{V}=\mathrm{IR}[0] & \mathrm{V}=2 \times 2([1] \text { each sub) } \\ \mathrm{V}=4\end{array}$
(iii) $I=V / R[0]$
$I=\frac{4}{4}$
$\mathrm{I}=1.0$
(d) (i) Two way
(ii) Landing/hall corridor, across room, kitchen-garage
(iii) Light can be switched on and/or off at either switch
(iv) Upper terminal
(v) Between the correct live and switch A no ECF to (v)

5 (a) (i) protons and neutrons (both needed)
(ii) 3 protons, 4 neutrons ([1] each)
(b) (i) Lead
(ii) To reduce radiation

To absorb the radiation/protect from radiation/safe
[1]
To produce/direct a (narrow) beam of beta particles
[1]
(iii) The user is further from the source

To minimise contact/exposure
(iv) Remove source and read the detector or measure background Put Al sheet between source and detector/in front of detector (or source)
Take a reading on detector
Add extra sheets of/increase thickness of Al
until reading [1] is constant/equals background/zero [1]
This thickness of Al is the range
(c) (i)

90	0	
Zr	${ }^{9} \beta$	
40	-1	([1] each number)

(ii) Time for half of yttrium 90 to decay (is 64 hrs)
mention of mass or activity or number of nuclei or radiation
[1] [2]
(iii) $192 / 64=3$ or 3 half lives
$2^{3}=8\left(\right.$ or other method) or $\frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \frac{1}{8}$
$2 / 8=0.25$ or $1 / 4$ [1]
(d) (i) fusion
(ii) (Generating) electricity
(iii) fission is the splitting of one (heavy) nucleus
(fusion is the uniting) of two light nuclei

Rewarding Learning

General Certificate of Secondary Education 2010

Science: Physics

Paper 2
Higher Tier
[G7605]

WEDNESDAY 16 JUNE, MORNING

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.
(a) (i) Mass is an unchanging property/amount of particles/
amount of matter/substance/material
Weight is the force due to gravity
[1]
(ii) $\mathrm{D}=\mathrm{M} / \mathrm{V}$
or $=270 /(125-25)[1]$

$$
=2.7
$$

Aluminium
(b) (i) $\mathrm{P}=\mathrm{F} / \mathrm{A} \quad$ incorrect physics give [0]

$$
=20000 / 8
$$

$=2500$ method not required for full marks

$$
\mathrm{Pa} \text { or } \mathrm{N} / \mathrm{m}^{2}
$$

(ii) Pivot P marked as RH end
(iii) Weight at centre of beam on or in the beam area
(iv) $\mathrm{CM}=\mathrm{ACM}$ [2]
$\mathrm{F} \times 4=20000 \times 2.5$ method not required for full marks
[1] [1]
no ecf for the marking of the pivot
$\mathrm{F}=12500(\mathrm{~N})[1] \quad$ Equal sign not required in 2nd line [1]
(c) (i) Time $=$ distance/(average) velocity - or equivalent

$$
\begin{aligned}
& =1.2 / 0.7 \\
& =1.7(\mathrm{~s})
\end{aligned}
$$

(ii) Average velocity $=\frac{1}{2}($ initial + final $)$
$0.7=\frac{1}{2}(0+$ final $) \quad$ method not required for full marks [1]
Final velocity $=1.4(\mathrm{~m} / \mathrm{s})$
Alternative:

$$
\begin{aligned}
s & =\frac{1}{2}(u+v) t \\
1.2 & =\frac{1}{2}(0+0.7) 1.7 \quad \text { or } 1.2=\frac{1}{2}(0+v) 1.7 \\
v & =1.4
\end{aligned}
$$

(iii) Acceleration = velocity change/time

$$
\begin{aligned}
& =(1.4-0) / 1.7 \\
& \text { ecf from }(\mathbf{i})-\text { time }- \text { and }(\text { ii })-\text { final velocity } \\
& =0.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

Alternative:

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2}[1] & v^{2} & =u^{2}+2 a s[1] \\
1.2 & =0+\frac{1}{2} a \times(1.7)^{2}[1] & 1.4^{2} & =0+2 \times a \times 1.2[1] \\
a & =0+\frac{1.2 \times 2}{1.7^{2}}=0.8[1] & a & =0.8[1]
\end{aligned}
$$

(d) (i) Thinking distance SAME

Braking distance GREATER
(ii) Thinking distance - CONSTANT speed/ same speed as before
Braking distance - Deceleration
(a) (i) 200×100
$=20000(\mathrm{~J})$
(ii) $200(\mathrm{~J})$
[1]
[1]
(iii) Work (done) $=$ force \times distance $($ moved $)$
ecf from (ii) for work method not required for full marks [1]
$200=\mathrm{F} \times 8$ [2]
$\mathrm{F}=200 / 8=25(\mathrm{~N})$
Alternative:

$$
\begin{aligned}
20000 & =\mathrm{F} \times 800[1] & & \text { for }[1] \mathrm{F} \times 8 \text { or } \mathrm{F} \times 800 \\
\mathrm{~F} & =25(\mathrm{~N}) & & \text { no credit for } 200 \text { alone }
\end{aligned}
$$

(iv) $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2} \quad$ method not required for full marks

$$
\begin{aligned}
& =\frac{1}{2} \times 85 \times 8^{2} \\
& =2720(\mathrm{~J})
\end{aligned}
$$

(v) $\mathrm{PE}=\mathrm{mgh} \quad 85 \times 10 \times \mathrm{h}=1700 \quad$ ecf from (iv) for KE
$85 \times 10 \times \mathrm{h}=1700 \quad$ ecf from (iv) for KE
$\mathrm{h}=2.0(\mathrm{~m})$

$$
[1]
$$

method not required for full marks
$\mathrm{PE}=2720$ [0]
(b) (i) Any five from:

Known weight or known mass or use of newtonmeter or balance to find it
Two points a measured distance apart/length of string
Switch on motor
Time to move between points/measured with stopclock
Repeat or take average
Power $=\frac{\text { work done }}{\text { time taken }} \quad$ essential for full marks
Alternative is Power $=$ weight \times average speed
Quality of written communication
(ii) Input (electrical energy) or power
or energy wasted
Energy used by motor = input energy
(c) (i) Upward curve or line starting at same

Copper rising more quickly - larger rise in temperature
in same time

(a) (i) Transverse
Longitudinal
(ii) Energy, KE or PE or mechanical energy
(iii) Vibrates/oscillates

Perpendicular to the direction of energy transfer/motion of wave
moves up or down [1]
moves up and down [2]
(iv) 0.3 (m)
(v) 0.8 (m)
(vi) $\mathrm{f}=$ no. of vibrations/time taken (or $\mathrm{f}=24 / 8$ or equivalent) [1]
$\mathrm{f}=3(\mathrm{~Hz})$
$\mathrm{f}=\frac{\mathrm{I}}{\mathrm{T}}$ give [1]
(vii) $\mathrm{v}=\mathrm{f} \lambda$
$\mathrm{v}=3 \times 0.8$ ecf from (v) for wavelength and
(vi) for frequency
$\mathrm{v}=2.4(\mathrm{~m} / \mathrm{s})$
(v) 0.8 (m)

1. Hammer seen striking gong or bell still working
2. No sound heard from bell or fainter sound
(ii) Sound cannot travel in a vacuum or
sound needs particles for propagation or equivalent or light can travel through a vacuum
(iii) Ultrasound/ultrasonic
(c) (i) One wave shown over the four grid squares
of greater the amplitude as before
(ii) Two waves shown over the four grid squares
Same amplitude
(d) (i) (1st echo is) from the bottom of the ice
(2nd echo is) from the top of the ice
(ii) Distance to the ice $=0.26 \times 1500 / 2$
$=195$

4 (a) Two (complete) loops one above and one below coil
One straight line through centre/or continuation of loop
Direction out of RIGHT hand end or in at left hand conflicting arrows - [0]
(b) (i) Variable resistor/variable power supply/rheostat/potential divider
(ii) 4 points plotted $\pm \frac{1}{2}$ smallest square

Best fit line
Through $0,0 \quad \pm 1$ square
(iii) 10 clips
1.2 A intersects line at approximately 10 clips
(c) (i) Battery, switch
in series with coil - complete circuit
Ignore ammeters/voltmeter
Coil wound around soft iron core - look for this point
before any further credit
Additional components, e.g. motor [1]
(ii) Iron

Is attracted when electromagnet switched on
Is an electromagnet/temporary magnetism/magnetic
(iii) X and Y both correct
(iv) An insulator (may be a named insulator)

Otherwise device at XY always ON/contacts or X, Y
(d) (i) $\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{p}}=\mathrm{N}_{\mathrm{s}} / \mathrm{N}_{\mathrm{p}}$ [1]
$\mathrm{V}_{\mathrm{s}}=6 \times 240 / 1800[2]$

$$
\begin{equation*}
=0.8 \text { [1] } \tag{4}
\end{equation*}
$$

(ii) Changing current/magnetic field in primary coil is changing Causes changing current/voltage to be induced in secondary
(iii) step up - increases the voltage

Reduces current/energy losses (in cable) [1]
step down - reduces the voltage
Safer voltage (for domestic appliances)
useable/suitable for domestic appliances
reduces resistance - [0]
(a) (i) 365 or $365 \frac{1}{4}$ days
(ii) A: summer

C: winter
[1]
(iii) Line through the earth's centre inclined to the vertical, consistent with answer to (ii)
(iv) Area to left of vertical terminator shaded
(b) (i) Hydrogen only
(ii) Gas/hydrogen moves towards centre

Due to gravitational forces*

* both needed before full marks awarded

Gas cloud spins/pressure increases
And heats up

* (Nuclear) fusion begins when temperature very high

Any 4 of the 5 points above
nebula contracts [1] or density increases [1] - or gas hydrogen moves toward centre
heating associated with fusion - [0]
(iii) Planets orbit Sun in same sense/direction
orbit in same way [0]
Planets orbit in same plane

