GCSA

Science: Physics

Summer 2009

Mark Schemes

NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE)

 MARK SCHEMES (2009)

 MARK SCHEMES (2009)}

Foreword

Introduction

Mark Schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes teachers and students will be able to see what examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of 16 - and 18-year-old students in schools and colleges. The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes therefore are regarded as a part of an integral process which begins with the setting of questions and ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. What is published represents this final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example, where there is no absolute correct response - all teachers will be familiar with making such judgements.

The Council hopes that the mark schemes will be viewed and used in a constructive way as a further support to the teaching and learning processes.

CONTENTS

Page

Foundation Tier

Paper 1 1
Paper $2 \longrightarrow 9$
Higher Tier
Paper $1 \quad 17$
Paper $2 \quad 25$

General Certificate of Secondary Education 2009

Science: Physics

Paper 1
Foundation Tier

[G7602]

WEDNESDAY 10 JUNE, AFTERNOON

MARK
 SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.

1 (a) (i) a force [1]
newtons [1]
(iii) $W=m g[1]$
$=750 \times 10=7500[1]$
N [1]
(iv) Gravity attracts it
(b) (i) Twice
(ii) 200 m
(iii) Average speed $=$ distance/time [1] no mark for $\mathrm{km} / \mathrm{hr}$ unless correct numerical answer

$$
\begin{aligned}
= & 1200 / 160[1] \\
= & 7.5[1] \\
& \mathrm{m} / \mathrm{s}[1]
\end{aligned}
$$

(iv) Straight line starting at 0,0 [2]
ending at 160,1200 [1]
ending at $160,1200[1]$
Any other line give [0]
(c) Speed - Increases [1]

Icy - Increases [1]
Alcohol - Increases [1]
Braking force - Decreases [1]
(ii) Tick at forces are equal
(a) (i) Efficiency $=$ useful output energy/total input energy Must be energy/work/power

$$
\frac{\text { output }}{\text { input }} \text { give [0] }
$$

(ii) Input energy $=150+450$ [1]

$$
\begin{equation*}
=600(\mathrm{~kJ})[1] \tag{2}
\end{equation*}
$$

(iii) Efficiency $=150 / 600$ (e.c.f. from (ii) for total energy input) [1]

$$
\begin{equation*}
=0.25 \text { [1] } \tag{2}
\end{equation*}
$$

0.25% give [2]/[3]
25 give [2]/[3]
(iv) Heat or sound
(b) (i)

Renewable and dependent on the energy of the Sun	Renewable and independent of the energy of the Sun	Non-renewable
Biomass Hydroelectric Wind	Geothermal	Coal Gas Nuclear

$\left[\frac{1}{2}\right]$ each round up
(ii) Chemical
(iii) Sunlight is converted to chemical energy by plants/photosynthesis [2]

Sun is a source of limitless energy [1]
Replacement plants can be grown [1] in a lifetime [1]
Sun allows plants to grow [1]
(c) (i) Work $=$ Force \times Distance moved
(ii) Work $=450 \times 400[1]$

$$
=180000(\mathrm{~J})[1]
$$

(iii) Power = work done/time taken [1]

Power $=18000 / 500$ [1] (e.c.f. from (ii) for work)
Power $=360 \mathrm{~W}$ [1]

3 (a) (i) Same distance behind mirror as object in front
(ii) Mirror Y
(iii) Image correct distance behind Y [1]

Line joining image and object perpendicular to mirror [1]
(iv) Ray marked with $i=r$ judged by eye [1]

Ray to eye appears to come from image (e.c.f.) [1]
Arrow from Z/towards A [1] (conflicting arrows [0])
(v) To enable driver to see down left-hand road
(b) (i) Rays bend towards normal [1]

Ray passes out without any deviation [1]
Rays bend away from the normal [1]
(ii) Ray P decreases in speed

Ray Q increases in speed
Both must be correct
(c) Lower ray passes through without dispersion [1]

Top ray - dispersion with two rays refracted correctly [1]
Least refracted correctly labelled with colour [1]
Most refracted correctly labelled with colour [1]
Emergent ray - correct refraction and divergence of both [1]

(d) (i) Diffraction - spreading of waves as they pass through a gap/around an obstacle
spreading in an area where a wave would not normally be
(ii) Object correctly drawn - barrier with gap [1]

Waves spreading out on right-hand side of gap [1]

4 (a) (i) Electrons move [1]
Move from duster to rod [1]
Giving a surplus of electrons on rod [1]
(ii) There are many more free moving charged particles in electrical conductors than there are in electrical insulators (3rd point in table)
(b) (i) Positive
(ii) Negative smoke particles are attracted to positive plate
(iii) Reduces atmospheric pollution
(c) (i) -(A)-placed between points W and X
(ii) Anti-clockwise
(iii) Resistance decreases
(iv) Voltage [1]
(v) Voltmeter - V - [1] across thermistor [1]
(vi) $R=V / I[1]$
$R=0.75 / 0.015$ [2]
$R=50(\Omega)[1]$
(d)

Switch S_{1}	Switch S_{2}	Lamp L_{1}	Lamp L_{2}
OPEN	CLOSED	Out	Out
CLOSED	OPEN	Dimmer	Dimmer
CLOSED	CLOSED	Normal	Out

$\left[\frac{1}{2}\right]$ each round down

5 (a) Top right - Neutron [1]
Bottom right - Proton [1]
Top left - Electron [1]
Bottom left - Electron [1]
Accept N, P, e
(b) (i) 24
(ii) Total of neutrons and protons
(iii) Same number of protons - if electrons also given award [0]
(c) (i) Radioactive
(ii) Gamma [1]

Beta [1]
Alpha [1]
(iii) Place aluminium between source and detector [1]

Add more sheets [1]
Until count rate falls to zero/background [1]
measure background
Any three
(d) (i) Tick statement two
(ii) 30 minutes [1]

Long enough to mix with the blood/short enough to avoid damage or without causing tissue damage [1]
Five seconds too short to mix with blood or activity too small to detect [1]
One year would cause tissue damage or damage body cells [1]
Quality of written communication
available MARKS

Rewarding Learning

General Certificate of Secondary Education 2009

Science: Physics

Paper 2
Foundation Tier
[G7603]

FRIDAY 19 JUNE, MORNING

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/ unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/ unit mark.

1 (a) B [1]
Wide base [1]
Low CoG [1]
(b) (i) Pivot - centre of the wheel [1]

Effort - at the handle, must touch or pass through handle [1] Direction - upwards, only if line of action when extended passes through handle [1]
(ii) The effort is further from the pivot [1]

So smaller force can produce same moment as the weight [1]/or larger moment (Moment is essential in the answer)
Also accept increases moment of (effort)
Force multiplier [0] unless further explanation.
Moving effort [0] Larger effort [0] Turning force [0]
(c) (i) Moment $=$ force \times distance from pivot [1]
if perpendicular given [1]
(ii) Moment $=5000 \times 5$ [2]

$$
\begin{equation*}
=25000(\mathrm{Nm})[1] \tag{3}
\end{equation*}
$$

(iii) Pressure $=$ Force/Area [1] or equivalent
$=30000 / 120$ [1]
= 250 [1]
Pa or $\mathrm{N} / \mathrm{m}^{2}$ [1]
or $\mathrm{N} / \mathrm{cm}^{2}[1]$ if no working present
If working present, unit credit given for Pa or $\mathrm{N} / \mathrm{m}^{2}$
(d) (i) Tension in the string
(ii) Move away in a straight line [1] at a tangent to the circle [1]
(a) (i) Sketch showing:

Bending [1]
With brass on outside [1]

(ii) As the temperature increases [1] gets hot/warms up/ strip bends away (from the knob) or to the left [1] away from contact strip bends and breaks contacts [2]
opening the contacts/breaking circuit [1]
Quality of written communication
(iii) To set the temperature (at which thermostat switches (off)) or on control/change/raise or lower temperature
Adjust the distance strip has to bend [1]
Reset heater [0] Sensitivity [0]
(iv) Substance:

Insulator or named insulator (e.g. polythene) [1] wood
Reason:
Otherwise heater permanently on or
Otherwise thermostat is short circuited [1]
does not conduct electricity
does not conduct heat [0]
(b) Pin breaks (or bends) [1]

Force on pin due to contracting flat iron bar [1]
It contracts [1] Increasing force/pressure on pin
Pin contracts [0] shrinks [1] shortens [1]
(c) (i) Conduction

Convection
Radiation
Evaporation
Any three
(ii) Convection [1]
Atoms in solids are bound or unable to translate or unable to move long distances [1]
(iii) Polystyrene (beads) or urea formaldehyde or foam
(iv) Feathers trap air [1]

Air is a good insulator [1]
(d) (i) Electrons
(ii) Atoms or molecules
(iii) Electrons absorb KE from flame/Electrons move faster

Electrons collide with atoms/Passing KE to vibrating atoms in each collision
Any three
(e) Good absorbers of radiation
more than one tick [0]

3 (a) The number of vibrations per second
(b) (i) Wavelength correctly marked and labelled
(ii) Amplitude correctly marked
(c) (i) Longitudinal or pressure wave
(ii) Sound waves consist of vibrations of particles/molecules Needs particles to pass through/propagation
(iii) Electric bell in a chamber (bell jar)

Hammers seen striking gong
Sound of the bell is audible
Chamber/bell jar connected to vacuum pump
Pump switched on/air removed from chamber/bell jar
Loudness of sound decreases
Sound becomes inaudible
Even though the hammer is seen still striking gong
Any six
(iv) $20 \mathrm{~Hz}[1]$ to $20 \mathrm{kHz}[1]$
(v) Upper limit reduces [2]
(Range reduces [1] lower limit changes [0])
(d) (i) Speed $=$ frequency \times wavelength or $v=f \lambda$
(ii) Speed $=200 \times 1.7$ [2]

$$
\begin{aligned}
& =340[1] \\
& =\mathrm{m} / \mathrm{s}[1]
\end{aligned}
$$

AVAILABLE

4 (a) (i) The electric current
(ii) Inside the coil
(iii) More cells/bigger current [1]

More turns on the coil [1]
Any magnetic core (any named magnetic substance) [1]
(b) (i) Coil
(ii) The core
(iii) Iron
(iv) Iron is more easily/strongly magnetised [1]

Iron loses its magnetism when current stops [1]
(v) Conducts current/acts as part of the circuit [1]

Pulls armature back to complete the circuit [1]
(vi) Weaker field [1] or Insufficient force [1]

The magnetic field would be too weak [1]
To pull the armature over/break the circuit [2]
(vii) Use weaker spring

Adjust contact to press less strongly
Move coil tighter to armature
Increase number of turns
Increase the current (more cells)
Any three
(c) It experiences a force/is pulled or pushed/movement [1]

Up the page/down the page/perpendicular to field and current [1]

5 (a) (i) A = Earth or a planet
(ii) $\mathrm{B}=\mathrm{Moon}$
(iii) $\mathrm{C}=$ Star
(b) (i) Orbit
(ii) Communication
$\left.\begin{array}{l}\text { Navigation (GPS) } \\ \text { Weather monitoring }\end{array}\right\}$ or similar
Any two
(c) (i) Galaxy
(ii) Star
(iii) Gravity
(iv) The distance [1]
light travels in one year [1]
 Expense [0]
(d) (i) Hydrogen
(ii) Nuclear fusion [1]

Rewarding Learning

General Certificate of Secondary Education 2009

Science: Physics

Paper 1
Higher Tier

[G7604]

WEDNESDAY 10 JUNE, AFTERNOON

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.

1 (a) (i) A force/resistance [1] force of gravity [0] that opposes/preventing motion [1]
(ii) Zero
(iii) At rest [1]

Moving with constant velocity or constant speed [1]
(iv) $F=m a[1]$
$=750 \times 0.5$
$=375$ [1]
$F=\mathrm{A}-\mathrm{B}$ or $375=1200-\mathrm{B}$
$\mathrm{B}=825 \mathrm{~N}[1]$
(v) Force B is increasing
(b) (i) Average speed $=$ distance/time [1]

$$
\begin{aligned}
= & 1200 / 160[1] \\
= & 7.5[1] \\
& \mathrm{m} / \mathrm{s}[1] \text { independent mark }
\end{aligned}
$$

(ii) Straight line [1]
from 0,0 [1]
to 160,1200 [1]
(c) (i) $8 \times 1[1]$
$=8 \mathrm{~m}[1]$
(ii) Straight line [1]
from 2, 8 to 5,0 [1]
(iii) Deceleration $=$ slope or $8 / 3[1] \quad$ or $a=\frac{v-u}{t}$ or $\frac{8}{3}$

$$
=2.7 \mathrm{~m} / \mathrm{s}^{2}[1] \quad \text { ignore minus sign }
$$

(iv) Area under the graph from [1] or $\mathrm{s}=\frac{1}{2}(u+v) t$
$=8+\frac{1}{2} \times 3 \times 8$ [1]
$=20 \mathrm{~m}$ [1]

2 (a) (i) Efficiency = useful energy or work output/total energy input or equivalent
(ii) [1] [1]

$$
\begin{align*}
\text { Efficiency } & =150 /(150+450)[2] \\
& =150 / 600 \\
& =0.25[1] \text { or } 25 \% \tag{3}
\end{align*}
$$

(b) (i)

Renewable and dependent on the energy of the Sun	Renewable and independent of the energy of the Sun	Non-renewable
Biomass Hydroelectric Wind	Geothermal	Coal Gas Nuclear

$\left[\frac{1}{2}\right]$ each round up
(ii) Chemical
(iii) Sun allows plants to grow [1]

Sunlight is converted energy by plants/photosynthesis [2]
Sun is a source of limitless/renewable energy [1] sun's energy never runs out
(c) (i) Work $=$ Force \times Distance (moved) or $\mathrm{W}=\mathrm{f} \times \mathrm{d}$
(ii) Work $=450 \times 400$ [1]

$$
\begin{equation*}
=180000 \text { (J) [1] } \tag{2}
\end{equation*}
$$

(iii) Power $=$ work done/time taken [1] or $\mathrm{W}=\mathrm{P} \times \mathrm{t}$

Power $=180000 / 500[1] \quad$ e.c.f. from (ii)
Power $=360 \mathrm{~W}$ [1]
(d) (i) Heat from Sun is absorbed by land (and sea) or Earth

Heat is radiated back into atmosphere
Radiated heat is absorbed by carbon dioxide which re-radiates it back to earth
More carbon dioxide means more energy absorbed by atmosphere
Any three
(ii) Solar and wind energy is unreliable
(e) (i) Reason for closing: dangerous radioactive waste/pollution or fear of being a terrorist target [1]
Reason for building: secure/reliable source of electricity or reduce carbon dioxide emissions or conserve fossil fuels [1]
(ii) High costs of: Specialist personnel or Specialist equipment or Takes a very long time to do Danger to personnel because of radioactivity

3 (a)
Air

Lower ray straight through without dispersion [1]
Top ray - divides with correct refraction for both [1]
Least refracted labelled with appropriate colour [1]
Most refracted labelled with appropriate colour [1]
Emergent rays - correct refraction and divergence [1]
(b) (i) Spreading of a wave after passing through a gap
(ii) Obstacle correctly drawn - barrier with gap [1]

Curved wave fronts [1]
(c) (i) Refraction
(ii) Total internal reflection or T.I.R.
(iii) Y no change, Z an increase [1] each

New ray parallel to first ray in all parts [2]
(Parallel in only two sections [1])
(d) (i) Parallel rays converging, etc. [1]

Focal length marked [1]

(ii) Both focal points marked and labelled 2 cm from lens
(iii) Ray through centre of lens undeviated [1]

Ray parallel to p axis then through F or converse [1] e.c.f. for position of F from (ii)
Rays produced to meet [1]
Full image marked where rays meet [1] accept vertical line labelled I or vertical arrow
Arrow from object on at least one ray [1]
(iv) Real Image
(v) Image distance from candidate's diagram $\pm 2 \mathrm{~mm}$ [1]
(vi) Height from candidate's diagram $\pm 2 \mathrm{~mm}$ [1]
(a) (i) Live - C Neutral - A Earth - B

All must be correct
(ii) D: fuse [1]

E: cable/cord grip [1] flex, cord, cable clamp
(iii) Current flows to earth

Earth wire has low resistance
Current exceeds fuse rating
Fuse wire melts/blows/breaks
Disconnects/breaks the circuit
Any four
(b) (i) Week 6 meter reading $=12681+144=12825$ [1]

Units used in week $3=12556-12399=157$ [1]
(ii) Electrical energy
(iii) 11 (pence)
(iv)

$$
\begin{aligned}
& {[1] } \\
\text { Cost }= & 129 \times 11=1419 \mathrm{p} \text { e.c.f. for part (iii) } \\
= & £ 14.19[1] \\
& \text { or } 1419 \mathrm{p} \text { ignore } £ \text { sign if } \mathrm{p} \text { present }
\end{aligned}
$$

(c) (i) Voltage and current are proportional to each other
(ii) Ensure wire is at room/constant temperature or prevent wire heating up
(iii) Straight line of twice the gradient [2] starting at 0,0
(if just steeper [1])
(d) (i) Increases
(ii) Decreases [1]
(iii) Smaller than that of the cotton thread
(e) (i) 20 and 30 in parallel gives 12Ω [1]

24 and 12 in series gives 36Ω [1]
(ii) $\begin{gathered}{[1]} \\ I=V / R=12 / 36=0.33[2] \quad \text { e.c.f. for total resistance at (i) } \\ V=I R=24 \times 0.33=8 \mathrm{~V}[1]\end{gathered}$

5 (a) Top right - Neutron [1] (N)
Bottom right - Proton [1] (P)
Top left - Electron [1] (e)
Bottom left - Electron [1] (e)
(b) (i) 24
(ii) Total of neutrons and protons
(iii) Same number of protons
(iv) ${ }_{12}^{24} \mathrm{Mg}+{ }_{-1}^{0} \mathrm{e}(\beta)$
(c) (i) Measure background reading

Place aluminium between source and detector
Add more sheets
Until count rate falls to zero/background
Any three [1] each
(ii) Beta [1]

Only beta can pass through the paper or alpha cannot pass through paper [1]
(iii) Both parts or top and bottom both affected [1]

Gamma can pass through paper and the aluminium [1]
(d) (i) Time for the activity to fall to half its original value

Time for half of the atoms to decay
(ii) 30 minutes [1]

Long enough to mix with the blood/short enough to avoid damage without causing tissue damage [1]
Five seconds too short to mix with blood [1]
One year would cause tissue damage [1]/damage to body/cells
Quality of written communication

Rewarding Learning

General Certificate of Secondary Education

 2009
Science: Physics

Paper 2
Higher Tier
[G7605]

FRIDAY 19 JUNE, MORNING

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing ECF (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^{n} errors (e.g. writing 550 nm as $550 \times 10^{-6} \mathrm{~m}$) count only as arithmetical slips and lose the answer/unit mark.
(a) (i) Pivot - centre of the wheel [1]

Effort - at the handle, [1] must touch or pass through handle [1]
Direction - upwards, [1] only if line of action when extended passes through handle [1]
(ii) The effort is further from the pivot [1]

So smaller force can produce same moment as the weight [1]/or larger moment (Moment is essential in the answer)
Also accept increases moment of (effort)
Force multiplier [0] unless further explanation.
Moving effort [0] Larger effort [0] Turning force [0]
(b) (i) $\mathrm{ACM}=\mathrm{CM}[1]$

$$
\begin{aligned}
{[1] \quad } & =5000 \times 5[2] \quad \text { e.g. } \mathrm{F} \times 3=500 \times 5 \text { give [2] } \\
\mathrm{F} \times 3 & =8333 \mathrm{~N}[1] \quad \text { accept } 8300
\end{aligned}
$$

(ii) Pressure $=$ Force/Area [1] or equivalent

$$
\begin{aligned}
= & 30000 / 120[1] \\
= & 250[1] \\
& \text { Pa or } \mathrm{N} / \mathrm{m}^{2}[1] \quad \text { or } \mathrm{N} / \mathrm{cm}^{2}[1] \text { if no working present } \\
& \text { If working present, unit mark only given for Pa or } \mathrm{N} / \mathrm{m}^{2}
\end{aligned}
$$

(iii) $v=u+a t \quad$ or $v=0+10 \times 1.75[1] \quad$ If $9.81 \mathrm{~ms}^{-2} \rightarrow 17.1 \rightarrow 17.2$
$v=17.5 \mathrm{~m} / \mathrm{s}[1]$
(iv) Height $=\frac{1}{2}(u+v) t[1]$

$$
\begin{aligned}
& =\frac{1}{2}(0+17.5) \times 1.75[1]
\end{aligned} \quad \begin{aligned}
& \text { Also accept } \\
& \\
& =15.3 \mathrm{~m}[1] \quad \text { e.c.f. for } v \text { from (iii) } \quad \begin{array}{l}
\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}
\end{array} \\
& \mathrm{~s}=\frac{1}{2} \mathrm{gt}^{2}[1] \quad \mathrm{v}^{2}=2 \text { as }[1] \quad \mathrm{s}=\text { ave. speed } \times \text { time [1] } \\
& \\
& =
\end{aligned}
$$

(c) (i) Tension (in the string) Must be tension
(ii) Decrease

Increase
No change
Increase
$\left[\frac{1}{2}\right]$ each round down
(d) Momentum before $=$ momentum after [1]

$$
\begin{align*}
{[1] } & {[1] } \\
0.5 \times 3= & (0.5+0.75) \times V[2] \quad[1] \text { per side } \\
& (0.5 \times 3+0.75 \times 0) \text { gets }[1] \\
V= & 1.2 \mathrm{~m} / \mathrm{s}[1] \tag{4}
\end{align*}
$$

(a) (i) Sketch showing:

Bending [1]
With brass on outside [1]

(ii) As the temperature increases [1] gets hot/warms up/ strip bends away (from the knob) or to the left [1] away from contact strip bends and breaks contacts [2]
opening the contacts/breaking circuit [1]
Quality of written communication
(iii) To set the temperature (at which thermostat switches (off)) or on control/change/raise or lower temperature
Adjust the distance strip has to bend [1]
Reset heater [0] Sensitivity [0]
(iv) Substance:

Insulator or named insulator (e.g. polythene) [1] wood
Reason:
Otherwise heater permanently on or
Otherwise thermostat is short circuited [1]
does not conduct electricity
does not conduct heat [0]
(b) Pin breaks (or bends) [1]

Force on pin due to contracting flat iron bar [1]
It contracts [1] Increasing force/pressure on pin
Pin contracts [0] shrinks [1] shortens [1]
(c) (i) $\mathrm{GPE}=m g h[1]$

$$
\begin{align*}
& =0.02 \times 10 \times 1.8[2] \quad 20 \times 10 \times 1.8[1] \\
& =0.36(\mathrm{~J})[1] \quad 360[2] \tag{4}
\end{align*}
$$

(ii) 0.36 (J) (e.c.f. from (i)) Mark to benefit of candidate
(iii) $\mathrm{KE}=\frac{1}{2} m v^{2}[1] \quad 360=\frac{1}{2} \times 20 \times v^{2}[2]$ or $360=\frac{1}{2} \times 2 \times v^{2}[2]$
$0.36=\frac{1}{2} \times 0.02 \times v^{2}[2]$
$v^{2}=36[1] \quad v^{2}=u^{2}+2 a s$ wrong physics [0]
$v=6(\mathrm{~m} / \mathrm{s})[1] \quad$ All e.c.f. from (i)
(iv) Speed: remains as before [1]

KE: remains as before [1]
(v) Speed: remains as before [1]

KE: increases [1]

3 (a) (i) Passing energy from particles to particle
Sound moves by vibrations of particles/molecules
Needs particle to pass through/propagation
Sound produced by vibrations [0] needs moving particles [0]
(ii) Electric bell in a chamber (bell jar)

Hammer seen striking gong
Sound of the bell is audible
Chamber/bell jar connected to vacuum pump
Pump switched on/air removed from chamber/bell jar
Loudness of sound decreases
Sound becomes inaudible
Even though the hammer is seen still striking gong Any six
(b) $V=\frac{d}{t}[1] \quad 340=\frac{100}{t}[2] \quad 340=\frac{50}{t}[1]$
$t=0.29[1] \quad(0.294) \quad 0.145 \leftarrow[0]$ unless work shown
(c) Speed $=$ frequency \times wavelength or $v=f \lambda$ [1]

$$
\begin{align*}
& =200000 \times 1500 \text { or } 200000 \times 1.5[1] \\
& \text { or } 200 \times 1.5[0]-\text { formula mark [1] } \\
& =300000000\left(3 \times 10^{8}\right) \text { or } 300000\left(3 \times 10^{5}\right)[1] \\
& \mathrm{m} / \mathrm{s}[1] \quad \mathrm{km} / \mathrm{s}[1] \tag{4}
\end{align*}
$$

(d) (i) The wavelength should not have changed [1] or distance between waves

The direction is wrong [1] or indicated by diagram
(ii) Straight wavefronts, unchanged wavelength (by eye) [1] not behind barrier
Reflected so that $i=r$ (by eye) [1] Minimum is 2 wavefronts
(e) (i) Observation . . . amplitude decreases [1] height - eventually str. line

Explanation . . . sound gets quieter [1] lower/softer/loss of energy
(ii) Number of peaks or distance between peaks (doesn't change) [1] wavelength does not change [0]
Frequency or pitch does not change [1] Tone [0]
(iii) It is louder or greater amplitude [1]

It has the same pitch or frequency [1]

4 (a) (i) Energised/electromagnet switched on/magnetic
Core coil becomes magnetised [1]

Pulls/attracts armature/hammer [1]
(ii) Conducts current/acts as part of the circuit [1] Allows armature Pulls armature back to (complete the circuit) [1] $\}$ to be attracted [0]
Allows armature/hammer to move [1] flexible
(iii) The magnetic field would be too weak [2]

Not able to pull the armature over/break the circuit [2]
Weaker magnetic field give [1]/insufficient force [1]
(iv) Use weaker spring/adjust contact to press less strongly/move
tighter coil closer to armature/Increase number of turns/Increase the current (more cells)
More magnetic [1]
Any three
Thicker wire without explanation [0]
(b) (i) N Pole on the left or S on the right
(ii) Join ends of lines with straight parallel lines in coil [1]

Arrows inside coil from S to N (e.c.f. from (i)) [1]
outside $\quad \mathrm{N}$ to S
Drawing lines to straight lines on diagram [0] but mark for direction
(iii) Complete loop or straight line down centre
(c) It experiences a force/is pushed or/pulled [1] or movement Up/down page/perpendicular to field and current [1]
(d) (i) d.c. flows in a same/constant direction [1] constant value [0] constant polarity [1]
a.c. changes direction + to $-($ repeatedly $)$ [1]
(ii) Electromagnetic induction
(iii) D.C. or direct current or constant current
(iv) A complete iron core [1] which has a label [1]

Two coils of (insulated) wire [2]
(v) At output of power station (any proper use)

Any practical situation
(vi) To reduce energy loss in the grid or as appropriate depending on example given
(e) (i) Clockwise from the live terminal

Fuse [1]
Switch [1]
Heater [1]
(ii) \int If switch on neutral/wrong side:

Appliance can be live/at a high voltage/dangerous to touch [1]
Even when switch is off [1]

5 (a)

(i) A = planet orbit
(ii) $\mathrm{B}=$ Moon orbit
(iii) $\mathrm{C}=$ Comet path or an elliptical/circular path
(b) (i) $\mathbf{2 4}$ hours or same time as the Earth takes to make one rotation Same speed/rate [0]
(ii) Take photographs of large areas/spying/weather/sat nav/ any suitable use
(c) (i) Stars/Suns - not the sun
(ii) Gravity
(iii) Galaxies are moving away from each other Universe is expanding [1] but not expanding galaxies
(iv) They are moving apart faster [1]
(d) (i) Time $=$ distance/speed [1] or $t=s / v$

$$
\begin{aligned}
& =8.6 / 0.00004[1] \\
& =215000 \text { years [1] }
\end{aligned}
$$

(ii) Spacecraft too slow or takes longer than a human lifetime or distance too great/too much fuel/takes too long resources for life [1]
Any two
expense [0]
(iii) $2 \times 8.6=17.2[1]$ years [1] $\mathbf{5 . 4} \times \mathbf{1 0}^{\mathbf{8}} \mathbf{s}$
(e) (i) Hydrogen
(ii) Fusion
(iii) (Two) hydrogen [1]/helium nuclei join [1] fusing [1]

