Physics PH3 Equations Sheet | $s = v \times t$ | s
v
t | distance
speed
time | | |---|--|---|--------------------| | refractive index = $\frac{\sin i}{\sin r}$ | i
r | angle of incidence angle of refraction | | | $magnification = \frac{image\ height}{object\ height}$ | | | | | $P=\frac{1}{f}$ | P
f | power
focal length | | | refractive index = $\frac{1}{\sin c}$ | С | critical angle | (Higher Tier only) | | $T=\frac{1}{f}$ | T
f | periodic time
frequency | | | $M = F \times d$ | M
F
d | moment of the force force perpendicular distance from the line of action of the force to the pivot | | | $P = \frac{F}{A}$ | P
F
A | pressure
force
cross-sectional area | | | $\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$ | V _p
V _s
n _p
n _s | potential difference across the primary coil potential difference across the secondary coil number of turns on the primary coil number of turns on the secondary coil | | | $V_p \times I_p = V_s \times I_s$ | V _p | potential difference across the primary coil current in the primary coil potential difference across the secondary coil current in the secondary coil | |