Surname										Other Names								
Centre Number						Candidate Number												
Candidate signature																		

General Certificate of Secondary Education Specimen Paper

SCIENCE A
 Unit 1a Physics (Energy and Electricity)

PHY1A

ASSESSMENT and QUALIFICATIONS ALLIANCE

PHYSICS

Unit 1a Physics (Energy and Electricity)

Date and Time

For this paper you must have:

- a black ball-point pen
- an objective test answer sheet.

You may use a calculator.

Time allowed: 30 minutes

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title 'Energy and Electricity' printed on it.
- Attempt one Tier only, either the Foundation Tier or the Higher Tier.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Answer all the questions for the Tier you are attempting.
- Record your answers on the separate answer sheet only.
- Do all rough work in this book, not on your answer sheet.

Instructions for recording answers

- Use a black ball-point pen.
- For each answer completely fill in the circle as shown:
- Do not extend beyond the circles.
- If you want to change your answer, you must cross out your original answer, as shown:

- If you change your mind about an answer you have crossed out and now want to choose it, draw a ring around the cross as shown:

Information

- The maximum mark for this paper is 36 .

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you cross out completely the work that is not to be marked.

You must do one Tier only, either the Foundation tier or the Higher Tier.
The Higher Tier starts on page 14 of this booklet.

FOUNDATION TIER

SECTION ONE

Questions ONE to SIX.
In these questions, match the letters, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, with the numbers $\mathbf{1 - 4}$.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

The devices shown transfer electrical energy in different ways.
Bedside lamp

1
Bell

2
Drill

3
Iron

4

The list gives the useful form of energy the devices are designed to produce.
Match words, A, B, C and D, with the devices numbered $\mathbf{1 - 4}$.

A heat (thermal energy)
B light
C movement (kinetic energy)
D sound

QUESTION TWO

The diagram shows the main parts of a nuclear power station.

Match words, A, B, C and D, with the numbers $\mathbf{1 - 4}$ in the sentences.

A electricity
B movement (kinetic)
C steam
D uranium

The energy source for this power station is . . . $1 .$. .
The turbine is driven by ... $2 \ldots$.
The turbine transfers ... $3 \ldots$ energy to the generator.
The generator transfers energy to homes and factories as ...4... .

Turn over for the next question

QUESTION THREE

A heater transfers energy to a room in various ways.

Hot air rises through the heater by ... 4 ... currents

Match words, A, B, C and D, with the numbers $\mathbf{1 - 4}$ in the diagram.

A conduction
B convection
C radiation

D reflection

QUESTION FOUR

If we use renewable energy sources, we will not need to burn so much fossil fuel.
However, capturing renewable energy sources can also cause problems.
Match words, A, B, C and D, with the statements $\mathbf{1 - 4}$ in the table.

A dams (for hydroelectricity)
B solar cells
C tidal barrages
D wind farms

What is used to capture energy	Problem caused
$\mathbf{1}$	can often be seen from a long way away and look unsightly to some people
$\mathbf{2}$	destroys muddy areas in river estuaries where wading birds feed
$\mathbf{3}$	land that could be used for farming or forests is flooded
$\mathbf{4}$	very high cost for each kilowatt hour of electricity is generated during lifetime

Turn over for the next question

QUESTION FIVE

The energy resource used to generate electricity depends on the location.
Match words, A, B, C and D, with the numbers $\mathbf{1 - 4}$ in the sentences.

A nuclear fuel
B solar energy
C tides
D wind

The best energy resource to use in a submarine which has to spend months under water is . . . 1 . . .

The best energy resource to use in a calculator is . . . $2 \ldots$.
Generators sited on hills in the UK are most likely to use . . $3 \ldots$.
A power station that includes a barrage across an estuary uses . . . $4 \ldots$.

QUESTION SIX

$$
\text { efficiency }=\frac{\text { useful energy transferred by device }}{\text { total energy supplied to device }}
$$

Match numbers, A, B, C and D, with the spaces $\mathbf{1 - 4}$ in the diagram.

A $\quad 0.3$
B 5
C 30
D 65

Turn over for the next question

SECTION TWO

Questions SEVEN to NINE.

Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION SEVEN

energy transferred power \times time $($ kilowatt hour, kWh$)$ $($ kilowatt, kW$)$ (hour, h$)$ total cost $=$ number of kilowatt hours \times cost per kilowatt hour

The diagram shows the readings on a household electricity meter at the beginning and at the end of a day.

Each kilowatt hour (kWh) of electricity costs 7 p .

At the start of the day

At the end of the day

7A How many kilowatt hours of electricity were used during the day?

137
247
363
$4 \quad 89$

7B On the following day, 30 kilowatt hours of electricity were used.
How much would this electricity cost?

1 .21p
2 . 27 p
$3 £ 2.10$
$4 £ 21.00$

7C During one week, a 7.5 kW shower heater was used for 3 hours.
How much energy was transferred by the heater?
$1 \quad 2.5 \mathrm{kWh}$
$2 \quad 4.5 \mathrm{kWh}$
$3 \quad 10.5 \mathrm{kWh}$
$4 \quad 22.5 \mathrm{kWh}$

7D For how long can a 2 kW kettle be used at a cost of 7 p ?

130 minutes (half an hour)
22 hours
3 3.5 hours

45 hours

Turn over for the next question

QUESTION EIGHT

Anne did two experiments on radiation. The apparatus she used is shown in the diagram.

This can has a shiny silver surface

Experiment 1

- Anne put the same volume of cold water into the two cans.
- She then switched on the heater.
- Ten minutes later, she measured the temperature of the water in each can.

Experiment 2

- The student filled both cans with boiling water.
- This time she left the heater off.
- Ten minutes later, she measured the temperature of the water in the two cans.

The table shows her results.

Experiment 1				Experiment 2			
Initial temperature of water in ${ }^{\circ} \mathbf{C}$		Final temperature of water in ${ }^{\circ} \mathbf{C}$		Initial temperature of water in ${ }^{\circ} \mathrm{C}$		Final temperature of water in ${ }^{\circ} \mathbf{C}$	
Shiny silver can	Dull black can	Dull black can	Shiny silver can	Shiny silver can	Dull black can	Dull black can	Shiny silver can
15	15	27	19	100	100	84	95

8A Which was an independent variable in the two experiments?

1 the final temperature of the water
2 the initial temperature of the water
3 the time the water was left
4 the volume of the water

8B Which of these was not a control variable in Anne's Experiment 1?

1 distance from heater to cans
2 final temperature of water
3 power of radiant heater
4 volume of water

8C Experiment 1 shows that a shiny silver surface . . .

1 is a good absorber of radiation.
2 is a good conductor of radiation.
3 is a good emitter of radiation.
4 is a good reflector of radiation.

8D Experiment 2 shows that a dull black surface...

1 is a good absorber of radiation.
2 is a good conductor of radiation.
3 is a good emitter of radiation.
4 is a good reflector of radiation.

QUESTION NINE

The diagram shows some ways of reducing energy loss from a house.

The table gives information about ways of reducing energy loss from a house.

Method of reducing energy loss	Cost of fitting	Annual saving
Draught-proofing	$£ 50$	$£ 50$
Hot water tank jacket	$£ 20$	$£ 15$
Loft insulation	$£ 200$	$£ 50$
Temperature controls on radiators	$£ 100$	$£ 20$

9A Which method of reducing energy loss saves money by preventing the house becoming too warm?

1 draught-proofing
2 hot water tank jacket
3 loft insulation
4 temperature controls on radiators

9B Which method reduces energy loss by the smallest amount?

1 draught-proofing
2 hot water tank jacket
3 loft insulation
4 temperature controls on radiators

9C Which method pays for itself in the shortest time?

1 draught-proofing
2 hot water tank jacket
3 loft insulation
4 temperature controls on radiators

9D What is the pay-back time on loft insulation?
$1 \frac{1}{4}$ year
$2 \frac{1}{2}$ year
32 years
$4 \quad 4$ years

You must do one Tier only, either the Foundation tier or the Higher Tier.
The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION ONE

Questions ONE to TWO.

In these questions, match the letters, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, with the numbers $\mathbf{1 - 4}$.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

$$
\text { efficiency }=\frac{\text { useful energy transferred by device }}{\text { total energy supplied to device }}
$$

Match numbers, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, with the spaces $\mathbf{1 - 4}$ in the diagram.

A $\quad 0.3$
B 5
C 30
D 65

QUESTION TWO

The picture shows a motorcycle engine.

Match words, A, B, C, and D, with the numbers $\mathbf{1 - 4}$ in the sentences.

A infra red radiation
B particles
C surface area
D temperature

The engine becomes very hot, so it emits mainly
This process does not involve . . $2 \ldots$. .
The higher the $\ldots 3 \ldots$, the more heat is lost.
To make the loss of heat occur more quickly, the engine has 'fins' to increase its . . . $4 \ldots$. .

Turn over for the next question

SECTION TWO

Questions THREE to NINE.
Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION THREE

Anne did two experiments on radiation. The apparatus she used is shown in the diagram.

Experiment 1

- Anne put the same volume of cold water into the two cans.
- She then switched on the heater.
- Ten minutes later, she measured the temperature of the water in each can.

Experiment 2

- The student filled both cans with boiling water.
- This time she left the heater off.
- Ten minutes later, she measured the temperature of the water in the two cans.

The table shows her results.

Experiment 1				Experiment 2			
Initial temperature of water in							
 Shiny	Final temperature of water in ${ }^{\circ} \mathbf{C}$	Initial temperature of water in ${ }^{\circ} \mathbf{C}$	Final temperature of water in ${ }^{\circ} \mathbf{C}$				
Sull black can	Dull black can	Shiny silver can	Shiny silver can	Dull black can	Dull black can	Shiny silver can	
15	15	27	19	100	100	84	95

3A Which was an independent variable in the two experiments?

1 the final temperature of the water
2 the initial temperature of the water
3 the time the water was left
4 the volume of the water

3B Which of these was not a control variable in Anne's Experiment 1?

1 distance from heater to cans
2 final temperature of water
3 power of radiant heater
4 volume of water

3C Experiment 1 shows that a shiny silver surface . . .

1 is a good absorber of radiation.
2 is a good conductor of radiation.
3 is a good emitter of radiation.
4 is a good reflector of radiation.

3D Experiment 2 shows that a dull black surface...

1 is a good absorber of radiation.
2 is a good conductor of radiation.
3 is a good emitter of radiation.
4 is a good reflector of radiation.

QUESTION FOUR

The diagram shows some ways of reducing energy loss from a house.

The table gives information about ways of reducing energy loss from a house.

Method of reducing energy loss	Cost of fitting	Annual saving
Draught-proofing	$£ 50$	$£ 50$
Hot water tank jacket	$£ 20$	$£ 15$
Loft insulation	$£ 200$	$£ 50$
Temperature controls on radiators	$£ 100$	$£ 20$

4A Which method of reducing energy loss saves money by preventing the house becoming too warm?

1 draught-proofing
2 hot water tank jacket
3 loft insulation
4 temperature controls on radiators

4B Which method reduces energy loss by the smallest amount?

1 draught-proofing
2 hot water tank jacket
3 loft insulation
4 temperature controls on radiators

4C Which method pays for itself in the shortest time?

1 draught-proofing
2 hot water tank jacket
3 loft insulation
4 temperature controls on radiators

4D What is the pay-back time on loft insulation?
$1 \frac{1}{4}$ year
$2 \frac{1}{2}$ year
32 years
$4 \quad 4$ years

Turn over for the next question

QUESTION FIVE

The diagram shows a tidal barrage used to generate electricity.
Before the barrage was built, the mud flats on the estuary were repeatedly covered with sea water as the tide came in and went out again.
Wading birds feed on organisms that live in mud.

5A As water moves from the lower basin into the upper basin it gains mainly ...

1 electrical energy.
2 gravitational potential energy.
3 sound energy.
4 thermal energy.

5B Which is the principal energy transfer as water flows from the upper basin through the turbine?

1 electrical energy to gravitational potential energy
2 electrical energy to kinetic energy
3 gravitational potential energy to kinetic energy
4 kinetic energy to gravitational potential energy

5C Compared to a coal-fired power station with a similar generating capacity, a tidal barrage usually...

1 costs more to build.
2 has a more concentrated energy supply.
3 has higher fuel costs.
4 has higher maintenance costs.

5D One disadvantage of this tidal barrage is that ...

1 it cannot be used in summer.
2 it has high decommissioning costs.
3 its output depends on the weather.
4 wading birds lose a food source.

Turn over for the next question

QUESTION SIX

The diagram shows a saucepan on a hotplate.
The saucepan contains soup.
Some heat (thermal energy) is lost through the metal walls of the saucepan to the surroundings.

6A The energy spreads through the soup by ...

1 free electrons colliding with ions.
2 heat rising.
3 the soup contracting and falling as it is heated.
4 the soup expanding and rising as it is heated.

6B The energy is transferred through the metal walls of the saucepan by ...

1 free electrons colliding with ions.
2 heated metal expanding and rising.
3 infra red waves passing through the metal.
4 the atoms gaining energy and moving faster through the metal.

6C The outer walls of the saucepan transfer energy to the surroundings by ...

1 free electrons colliding with ions.
2 infra red waves passing through the air.
3 metal atoms gaining energy and escaping into the air.
4 the air contracting and falling as it is heated.

6D The air in contact with the outer walls of the saucepan ...

1 contracts and falls due to decreased density.
2 contracts and falls due to increased density.
3 expands and rises due to decreased density.
4 expands and rises due to increased density.

Turn over for the next question

QUESTION SEVEN

Solar panels transfer solar energy to heat water.
This water then moves through a heat exchanger.

7A The different layers of the solar panel make the panel transfer solar energy in the most effective way.

Which row of the table shows how each layer helps this?

	Black top surface covering water pipes	Insulation
$\mathbf{1}$	absorbs radiant energy	stops heat conduction to roof
$\mathbf{2}$	absorbs radiant energy	protects water pipes from frost
$\mathbf{3}$	emits radiant energy	conducts heat to the water pipes
$\mathbf{4}$	reflects radiant energy	conducts heat to roof space

7B When the system is operating...

1 the water in tube $\mathbf{P S}$ becomes colder and moves from \mathbf{S} towards \mathbf{P}.
2 the water in tube $\mathbf{P S}$ becomes warmer and moves from \mathbf{S} towards \mathbf{P}.
3 the water in tube $\mathbf{Q R}$ becomes less dense and moves from \mathbf{R} towards \mathbf{Q}.
4 the water in tube $\mathbf{Q R}$ becomes more dense and moves from \mathbf{Q} towards \mathbf{R}.

7C The water pipes are made of long, narrow, copper tubing laid on the underside of the black top surface.

This arrangement ensures that heat energy is . . .

1 conducted quickly to the water in the narrow tubing.
2 distributed evenly between the top surface and the tubing.
3 reflected from the top surface.
4 transferred by convection.

7D Which design feature is most important for capturing maximum energy from the Sun's radiation?

1 large surface area for the panel
2 short distance between the copper tubing loops
3 well insulated copper tubing
4 wide diameter for the copper tubing

Turn over for the next question

QUESTION EIGHT

An African village is many miles away from a supply of mains electricity.
The Sun shines for at least a few hours nearly every day.
The villagers want a supply of electricity to pump water up from the well for a few hours each day.
The table shows the costs of two different ways of providing the electricity.

	Capital cost	Capital cost $($ per kWh*)	Fuel cost (per kWh*)	Maintenance cost $($ per kWh*)
Solar cells	$£ 1000$	20 p	zero	zero
Petrol generator	$£ 250$	10 p	20 p	10 p

[*These costs are averaged out over the 20 years that the equipment is expected to last.]

8A Which of the following statements is true?

1 A petrol generator has a higher capital cost per kWh .
2 A petrol generator has a higher initial capital cost.
3 A petrol generator has a higher overall cost per kWh .
4 A petrol generator needs less maintenance.

8B An advantage of the petrol generator is . . .

1 that it has no moving parts.
2 that it is cheaper to set up the system in the first place.
3 that it will cause less air pollution.
4 that it will cost less over a 20 year period.

8C A disadvantage of the solar cells for pumping water in the African village is . . .

1 that they can work out cheaper over a 20 year period.
2 that they have a high initial capital cost.
3 that they require no maintenance.
4 that they will not work during the night.

8D If the solar cells are used in the UK, they will produce only one fifth as much electricity during a 20 -year period as they do in the African village.

How much more expensive would each kilowatt hour of electricity from the solar cells then be compared to mains electricity at 8 p per kilowatt hour?
12.5 times more expensive

25 times more expensive
310 times more expensive
$4 \quad 12.5$ times more expensive

Turn over for the next question

QUESTION NINE

Electricity can be generated in various ways.
The main power stations use fossil fuels (coal, oil and gas) or nuclear fuels.
No nuclear power stations have been built in the UK for some years.

9A Which one of the following is a valid argument against nuclear power stations?
1 For maximum efficiency, they have to be in nearly constant use.
2 They have high decommissioning costs.
3 They have high fuel costs.
4 They produce gases that pollute the atmosphere.

9B Some people argue that we should make more use of wind power instead of nuclear or fossil fuel power stations.

Which statement supports this view?
1 Fossil fuel and nuclear power stations are needed when the wind drops.
2 Large wind farms can be unsightly and noisy.
3 Wind farms have zero fuel costs to offset high capital cost.
4 Wind farms use large areas of land.

9C

energy transferred
$($ kilowatt-hour, kWh$)$
:---:
$($ kilowatt, kW$)$
:---:
$($ hour $)$

A nuclear power station produces 1600000000 kWh of energy from 1 tonne of nuclear fuel.
How much nuclear fuel would be used by a 2400 MW nuclear power station for 24 hours? ($1 \mathrm{MW}=1000 \mathrm{~kW}$)
10.00036 tonnes
20.000625 tonnes
30.036 tonnes
$4 \quad 2.78$ tonnes

9D Nuclear power stations take a long time to build. Power is used in their construction and initial fuel processing. This, and the power produced by the station, are shown in the graph. The area under the graph represents the energy used or produced in GWh ($1 \mathrm{GWh}=1$ million kWh).

How many years will pass from the start of building before the power station produces more energy than was used to build it?

17 years
$2 \quad 7.5$ years
38 years
48.5 years

END OF TEST

FOUNDATION TIER

Instructions on how to complete this answer sheet are given on the question paper. Please make sure you follow them carefully.

	QUESTION ONE	1	2	3	4
A heat (thermal energy)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
B light		\bigcirc	0	\bigcirc	\bigcirc
C movement (kinetic energy)		\bigcirc	0	\bigcirc	\bigcirc
D sound		\bigcirc	\bigcirc	\bigcirc	0
	QUESTION TWO	1	2	3	4
A electricity		\bigcirc	\bigcirc	\bigcirc	\bigcirc
B movement (kinetic)		\bigcirc	-	\bigcirc	\bigcirc
C steam		\bigcirc	0	\bigcirc	\bigcirc
D uranium		\bigcirc	\bigcirc	\bigcirc	0
	QUESTION THREE	1	2	3	4
A conduction		\bigcirc	\bigcirc	\bigcirc	\bigcirc
B convection		\bigcirc	-	\bigcirc	\bigcirc
C radiation		\bigcirc	0	\bigcirc	\bigcirc
D reflection		\bigcirc	\bigcirc	\bigcirc	\bigcirc

	QUESTION FOUR	1	2	3	4
A dams (for hydroelectricity)		\bigcirc	\bigcirc	\bigcirc	\bigcirc
B solar cells		\bigcirc	\bigcirc	\bigcirc	\bigcirc
C tidal barrages		\bigcirc	\bigcirc	\bigcirc	\bigcirc
D wind farms		\bigcirc	\bigcirc	\bigcirc	\bigcirc
	QUESTION FIVE	1	2	3	4
A nuclear fuel		\bigcirc	\bigcirc	\bigcirc	\bigcirc
B solar energy		\bigcirc	\bigcirc	\bigcirc	\bigcirc
C tides		\bigcirc	\bigcirc	\bigcirc	\bigcirc
D wind		\bigcirc	\bigcirc	\bigcirc	\bigcirc

		QUESTION SIX	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
\mathbf{A}	$\mathbf{4}$				
B	5		$\mathbf{4}$		
\mathbf{C}	30		0		0

	QUESTION EIGHT			
	1	2	3	4
A	\bigcirc	0	\bigcirc	\bigcirc
B	\bigcirc	O	\bigcirc	\bigcirc
C	0	O	0	0
D	\bigcirc	O	\bigcirc	\bigcirc

	ES	ON		
	1	2	3	4
A	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	\bigcirc	\bigcirc	\bigcirc	\bigcirc
C	\bigcirc	0	\bigcirc	\bigcirc
D	\bigcirc	0	\bigcirc	\bigcirc

For AQA Office Use Only

Unit : PHY1A - Physics 1a

Centre:
 Candidate Number: UCI :
 Candidate Name:

For completion by the Examination Invigilator. Please fill this oval if the candidate is absent:

HIGHER TIER

Instructions on how to complete this answer sheet are given on the question paper. Please make sure you follow them carefully.

QUESTION THREE				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
A	0	0	0	0
B		0	0	0
C	0	0	0	0
D	0	0	0	0

QUESTION FOUR				
	1	2	3	4
A	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	\bigcirc	0	\bigcirc	\bigcirc
C	0	O	O	\bigcirc
D	\bigcirc	0	\bigcirc	

QUESTION FIVE				
	1	2	3	4
A	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	\bigcirc	0	\bigcirc	\bigcirc
C	0	0	-	\bigcirc
D	\bigcirc		\bigcirc	\bigcirc

QUESTION SEVEN
A
B
C
D
QUESTION EIGHT

	1	2	3	4
A	\bigcirc	\bigcirc	\bigcirc	\bigcirc
B	\bigcirc	O	\bigcirc	\bigcirc
C	\bigcirc	O	O	\bigcirc
D	\bigcirc	O	\bigcirc	\bigcirc

QUESTION NINE
A
B
C
D

For AQA Office Use Only

GCSE

SCIENCE A (4461)/PHYSICS (4451)

Objective Test Answer Key
PHY1A (Energy and Electricity)
Specimen Paper
Foundation Tier

Question	Key					
One	A	heat (thermal e light movement (kin sound		$\begin{aligned} & 4 \\ & 1 \\ & 3 \\ & 2 \end{aligned}$		
Two	A B C D	electricity movement (kin steam uranium		$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$		
Three	A B C D	conduction convection radiation reflection		$\begin{aligned} & 3 \\ & 4 \\ & 1 \\ & 2 \end{aligned}$		
Four	A B C D	dams (for hydr solar cells tidal barrages wind farms		$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$		
Five	A B C D	nuclear fuel solar energy tides wind		$\begin{aligned} & 1 \\ & 2 \\ & 4 \\ & 3 \end{aligned}$		
Six	A	$\begin{aligned} & 0.3 \\ & 5 \\ & 30 \\ & 65 \end{aligned}$		$\begin{aligned} & 4 \\ & 2 \\ & 3 \\ & 1 \end{aligned}$		
		A	B		C	D
Seven		1	3		4	1
Eight		2	2		4	3
Nine		4	2		1	4

GCSE

SCIENCE A (4461)/PHYSICS (4451)

Objective Test Answer Key
PHY1A (Energy and Electricity)
Specimen Paper
Higher Tier

Question			Key
One	\mathbf{A}	0.3	$\mathbf{4}$
	\mathbf{B}	5	$\mathbf{2}$
	\mathbf{C}	30	$\mathbf{3}$
	\mathbf{D}	65	$\mathbf{1}$
Two	\mathbf{A}	infra red radiation	$\mathbf{1}$
	\mathbf{B}	particles	$\mathbf{2}$
	\mathbf{C}	surface area	$\mathbf{4}$
	\mathbf{D}	temperature	$\mathbf{3}$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
Three	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{3}$
Four	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$
Five	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$
Six	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Seven	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$
Eight	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Nine	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	

