Surname				Other	Names			
Centre Nur	nber				Candidate	Number		
Candidate	Signat	ure						

General Certificate of Secondary Education Winter 2005

PHYSICS A (MODULAR) Physics in Action (Module 23)

346023

Thursday 24 November 2005 Morning Session

In addition to this paper you will require:

- a black ball-point pen;
- an answer sheet.

You may use a calculator.

Time allowed: 30 minutes

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title "Physics in Action" printed on it.
- Attempt one Tier only, either the Foundation Tier or the Higher Tier.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Answer **all** the questions for the Tier you are attempting.
- Record your answers on the separate answer sheet only. Rough work may be done on the question paper.

Instructions for recording answers

· Use a black ball point pop

•	Use a black ban-point pen.				
•	For each answer completely fill in the circle as shown:	1 ()	2 ●	3 ()	4 〇
•	Do not extend beyond the circles.				
•	If you want to change your answer, you must cross out your original answer, as shown:	1 ()	2 X	3 ()	4 ●
•	If you change your mind about an answer you have crossed out and now want to choose it, draw a ring around the cross as shown:	1 ()	2	3 ()	4 X

Information

• The maximum mark for this paper is 36.

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you cross out **completely** the work that is not to be marked.

You must do **one Tier** only, **either** the Foundation Tier **or** the Higher Tier.

The Higher Tier starts on page 14 of this booklet.

FOUNDATION TIER

SECTION A

Questions ONE to FIVE.

In these questions match the words in the list with the numbers.

Use each answer only once.

Mark your choices on the answer sheet.

QUESTION ONE

The diagram shows a simple electronic system. A small current from the processor is used to switch on a large current to the output device.

Match words from the list with the components 1-4 in the diagram.

input sensor output device processor

relay

QUESTION TWO

Lenses form images of objects.

Match words from the list with the numbers 1-4 in the sentences.

converging

diverging

real

virtual

This is a **1** lens.

It can be used in a camera to form a 2 image.

This is a **3** lens.

It cannot be used in a camera because it always forms 4 images.

QUESTION THREE

An electronic system is used to switch on street lighting.

The input sensor is an LDR. It gives an output of 1 in daylight but an output of 0 at night.

Match statements from the list with the numbers 1-4 on the flow chart.

the LDR gives a high output

the LDR gives a low output

the street lights switch off

the street lights switch on

QUESTION FOUR

The diagram shows a circuit containing a relay.

Match words from the list with the numbers 1-4 in the sentences.

coil lamp relay switch

When the switch S is closed, the relay acts as a $\dots 1$ A small current flows through the $\dots 2$ in the relay.

This closes the contact in the $\ldots 3 \ldots$

Now a large current can flow through the 4

QUESTION FIVE

This circuit contains a capacitor.

Match words from the list with the numbers 1-4 in the sentences.

charge

current

potential difference

resistance

The capacitor stores **1**

When the switch is closed, $a \dots 2 \dots flows$ in the circuit.

The \ldots 3 \ldots across the capacitor increases.

If the 4 of the circuit is increased, the capacitor will take longer to be fully energised.

SECTION B

Questions SIX and SEVEN.

In these questions choose the best **two** answers.

Do **not** choose more than two.

Mark your choices on the answer sheet.

QUESTION SIX

Which two of the following could be used as output devices in an electronic system?

AND gate LDR LED motor thermistor

QUESTION SEVEN

The arrangement shown uses two logic gates.

Which two of the rows G, H, J, K and L in the truth table are correct for this arrangement?

	Input X	Input Y	Input Z	Output
G	0	0	0	0
Н	0	0	1	1
J	1	0	1	1
K	1	1	0	0
L	1	1	1	0

SECTION C

Questions EIGHT to TEN.

Each of these questions has four parts.

In each part choose only one answer.

Mark your choices on the answer sheet.

QUESTION EIGHT

The diagram shows a lens being used to produce an image of an object.

- 8.1 The focus of the lens is at
 - A R

B S

- С Т
- D U
- 8.2 The image is formed at
 - A R
 - B S
 - C T
 - D U

- **8.3** Compared to the object, the image is
 - **A** real and magnified.
 - **B** real and smaller.
 - **C** virtual and magnified.
 - **D** virtual and smaller.
- **8.4** The system shown could be used in a
 - A camera.
 - **B** magnifying glass.
 - **C** slide projector.
 - **D** telescope.

QUESTION NINE

A gardener wants a heating system to come on if it is both dark **and** cold in her greenhouse.

- 9.1 For **P** she could use
 - A an AND gate.
 - **B** an LDR.
 - C a relay.
 - **D** a thermistor.
- 9.2 For \mathbf{Q} she could use
 - A a heater.
 - **B** an OR gate.
 - C a relay.
 - **D** a thermistor.
- 9.3 For **R** she could use \ldots .
 - A an AND gate.
 - **B** an OR gate.
 - C a relay.
 - **D** a thermistor.

9.4 For S she could use

- A an AND gate.
- **B** a NOT gate.
- C a relay.
- **D** a thermistor.

QUESTION TEN

The colour code for resistors is shown in the table.

10.1 A resistor has the following code:

White

9

	Band 1	Band 2	Band 3
	orange	yellow	red
What i	s its resistance?		
A	243 Ω		
B	342 Ω		

С $3\,400\,\Omega$

А

B

D $24\,000~\Omega$

10.2 What are the colour bands on a 72 Ω resistor?

	Band 1	Band 2	Band 3
Α	black	red	violet
В	black	violet	red
С	violet	red	black
D	violet	red	brown

- **10.3** What information does Band **4** give about the resistor?
 - **A** Accuracy of the value
 - **B** Diameter
 - C Temperature range
 - **D** Year of production
- **10.4** An LDR does not have a colour code on it.

This is because

- A it has a resistance which is too high for the code.
- **B** it has a resistance which is too low for the code.
- **C** it has a varying resistance.
- **D** it is an input sensor.

END OF TEST

You must do **one Tier** only, **either** the Foundation Tier **or** the Higher Tier.

The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION A

Questions ONE and TWO.

In these questions match the words in the list with the numbers.

Use each answer only once.

Mark your choices on the answer sheet.

QUESTION ONE

This circuit contains a capacitor.

Match words from the list with the numbers 1-4 in the sentences.

charge

current

potential difference

resistance

The capacitor stores **1**

When the switch is closed, $a \dots 2 \dots flows$ in the circuit.

The \ldots 3 \ldots across the capacitor increases.

If the 4 of the circuit is increased, the capacitor will take longer to be fully energised.

QUESTION TWO

The diagrams show logic gates arranged in different ways.

Arrangement 3

Match the truth tables P, Q, R and S with the arrangements 1–4.

Table P						
1 st Input	2 nd Input	Output				
0	0	1				
0	1	1				
1	0	1				
1	1	0				

Table Q						
1 st Input	2 nd Input	Output				
0	0	1				
0	1	0				
1	0	0				

Table	R
-------	---

1 st Input	2 nd Input	Output
0	0	0
0	1	1
1	0	1
1	1	1

1

0

1

1 st Input	2 nd Input	Output
0	0	0
0	1	0
1	0	0
1	1	1

SECTION B

Questions **THREE** and **FOUR**.

In these questions choose the best **two** answers.

Do **not** choose more than two.

Mark your choices on the answer sheet.

QUESTION THREE

The arrangement shown uses two logic gates.

Which two of the rows G, H, J, K and L in the truth table are correct for this arrangement?

	Input X	Input Y	Input Z	Output
G	0	0	0	0
Н	0	0	1	1
J	1	0	1	1
К	1	1	0	0
L	1	1	1	0

QUESTION FOUR

The diagram shows a lens being used as a magnifying glass.

Which two statements are correct?

rays of light are brought to a focus at the image the image is on the same side of the lens as the object the image is seen on a screen at point P the image produced is a virtual image the image produced is upside-down

SECTION C

Questions FIVE to TEN.

Each of these questions has four parts.

In each part choose only **one** answer.

Mark your choices on the answer sheet.

QUESTION FIVE

The diagram shows a lens being used to produce an image of an object.

- 5.1 The focus of the lens is at
 - A R

B S

- С Т
- D U

5.2 The image is formed at

- A R
- B S
- C T
- D U

- **5.3** Compared to the object, the image is
 - **A** real and magnified.
 - **B** real and smaller.
 - **C** virtual and magnified.
 - **D** virtual and smaller.
- **5.4** The system shown could be used in a
 - A camera.
 - **B** magnifying glass.
 - **C** slide projector.
 - **D** telescope.

QUESTION SIX

A gardener wants a heating system to come on if it is both dark **and** cold in her greenhouse.

- **6.1** For **P** she could use
 - A an AND gate.
 - **B** an LDR.
 - C a relay.
 - **D** a thermistor.
- 6.2 For **Q** she could use \ldots .
 - A a heater.
 - **B** an OR gate.
 - C a relay.
 - **D** a thermistor.
- **6.3** For **R** she could use \ldots
 - A an AND gate.
 - **B** an OR gate.
 - C a relay.
 - **D** a thermistor.

- 6.4 For S she could use
 - A an AND gate.
 - **B** a NOT gate.
 - C a relay.
 - **D** a thermistor.

QUESTION SEVEN

The colour code for resistors is shown in the table.

7.1 A resistor has the following code:

White

Band 1	Band 2	Band 3
orange	yellow	red

9

What is its resistance?

A	243 Ω
B	342 Ω
С	3400 Ω
D	$24000\ \Omega$

7.2 What are the colour bands on a 72 Ω resistor?

	Band 1	Band 2	Band 3
А	black	red	violet
В	black	violet	red
С	violet	red	black
D	violet	red	brown

- 7.3 What information does Band 4 give about the resistor?
 - **A** Accuracy of the value
 - **B** Diameter
 - **C** Temperature range
 - **D** Year of production
- 7.4 An LDR does not have a colour code on it.

This is because

- A it has a resistance which is too high for the code.
- **B** it has a resistance which is too low for the code.
- **C** it has a varying resistance.
- **D** it is an input sensor.

QUESTION EIGHT

In the circuits in this question, each switch represents an input.

The lamp represents the output.

- 8.1 This circuit represents
 - A an AND gate.
 - **B** an OR gate.
 - **C** an OR gate followed by a NOT gate.
 - **D** a NOT gate.

- 8.2 This circuit represents
 - A an AND gate.
 - **B** an OR gate.
 - **C** an OR gate followed by a NOT gate.
 - **D** a NOT gate.
- **8.3** This circuit represents
 - A an AND gate.
 - **B** an OR gate.
 - **C** an OR gate followed by a NOT gate.
 - **D** a NOT gate.
- 8.4 The lamp in this circuit lights
 - A only when both switches are closed.
 - **B** only when both switches are open.
 - **C** when either switch is closed and when both switches are closed.
 - **D** when either switch is closed, but **not** when both switches are closed.

NO QUESTIONS APPEAR ON THIS PAGE

QUESTION NINE

The circuit shown can be used as a light-dependent switch. It switches on a lamp when it is dark outside.

- 9.1 In this circuit, the transistor acts as
 - A an amplifier.
 - **B** an input sensor.
 - **C** a switch.
 - **D** protection for the diode.
- 9.2 As the amount of light decreases, the resistance of component M increases.

This means that

- A the voltage across M decreases, and the voltage across N increases.
- **B** the voltage across **M** increases, and the voltage across **N** decreases.
- \mathbf{C} the voltages across \mathbf{M} and \mathbf{N} both decrease.
- **D** the voltages across **M** and **N** both increase.

- 9.3 The purpose of the diode is to protect
 - A the lamp when the relay is switched on.
 - **B** the relay when the lamp is switched on.
 - **C** the transistor when the relay is switched off.
 - **D** the transistor when the relay is switched on.
- **9.4** The circuit can be changed so that it gives a warning when a machine becomes too hot. Which of the statements is correct?
 - **A M** should be an LDR, and the output device could be an LDR
 - **B M** should be an LDR, and the output device could be an LED
 - **C M** should be a thermistor, and the output device could be an LDR
 - **D M** should be a thermistor, and the output device could be an LED

QUESTION TEN

You may find this formula useful when answering parts of this question. $V_{\rm out} = V_{\rm in} \times \frac{R_2}{R_1 + R_2}$

The variable resistor in the potential divider circuit has been adjusted to a resistance of 300Ω .

The sensor resistance can change, but initially it is 900Ω .

10.1 What is the value of V_{out} ?

- A 1.5 V
- **B** 2.0 V
- C 4.5 V
- **D** 24.0 V

A	1.5	V

- **B** 3.0 V
- C 4.5 V
- **D** 5.5 V

10.3 The conditions affecting the sensor change and its resistance rises to 1200Ω .

What is the value of V_{out} now?

- A 1.2 V
- **B** 1.5 V
- C 4.5 V
- **D** 5.4 V
- 10.4 The sensor resistance stays at 1200Ω . The variable resistor is adjusted so that V_{out} is 2 V. What is the resistance of the variable resistor now?
 - **A** 100 Ω
 - **B** 400 Ω
 - $C = 450 \,\Omega$
 - **D** 600 Ω

END OF TEST

G/H150046/W05/346023

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

G/H150046/W05/346023

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

Copyright $\ensuremath{\mathbb{O}}$ 2005 AQA and its licensors. All rights reserved.