| Surname | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Centre Number | | | | | | Other Names | |
| Candidate Signature | | | | | | | |
| Candidate Number | | | | | | | |

General Certificate of Secondary Education
Spring 2003

SCIENCE: PHYSICS (MODULAR)
346023
Physics in Action (Module 23)

ASSESSMENTand
OUALIFICATIONS
alliance

Wednesday 5 March 2003 Morning Session

In addition to this paper you will require:

- an HB pencil and a rubber;
- an answer sheet.

You may use a calculator.

Time allowed: 30 minutes
Copyright © 2003 AQA and its licensors. All rights reserved.

Instructions

- Fill in the boxes at the top of this page.
- Check that your name, candidate number and centre number are printed on the separate answer sheet.
- Check that the separate answer sheet has the title "Physics in Action" printed on it.
- Attempt one Tier only, either the Foundation Tier or the Higher Tier.
- Answer all the questions for the Tier you are attempting.
- Make sure that you use the correct side of the separate answer sheet; the Foundation Tier is printed on one side and the Higher Tier on the other.
- Mark your responses on the separate answer sheet only. Rough work may be done on the question paper.
- Mark the best responses by using a thick pencil stroke to fill in the box. Use an HB pencil. Make sure the pencil stroke does not extend beyond the box. Do not use ink or ball-point pen. If you wish to change your answer, rub out your first answer completely.
See below.
Examples:

Information

- The maximum mark for this paper is 36 .

Advice

- Do not choose more responses than you are asked to. You will lose marks if you do.
- Make sure that you hand in both your answer sheet and this question paper at the end of the test.
- If you start to answer on the wrong side of the answer sheet by mistake, make sure that you rub out completely the work that is not to be marked.

You must do one Tier only, either the Foundation Tier or the Higher Tier.
The Higher Tier starts on page 14 of this booklet.

FOUNDATION TIER

SECTION A

Questions ONE to FIVE.

In these questions match the words in the list with the numbers.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

These circuit symbols are used in electronic circuits.

1

2

3

4

Match each component in the list with its symbol 1-4.

capacitor

NOT gate
OR gate
relay

QUESTION TWO

In electronic circuits, components have different functions.
Match the words from the list with the components $\mathbf{1 - 4}$ in the table.

AND gate
 buzzer
 capacitor
 LDR

Component	Function
$\mathbf{1}$	used as a light sensor
$\mathbf{2}$	used as an output device
$\mathbf{3}$	used as a processor
$\mathbf{4}$	used as a timer

TURN OVER FOR THE NEXT QUESTION

QUESTION THREE

This question is about an electronic system that controls the heater in a hot water tank.

The boxes below explain how the system works.
Choose sentences $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} from the list to fill the boxes $\mathbf{1 - 4}$.

P The heater in the tank switches on.

Q The thermistor gives a high output.

R The thermistor gives a low output.

S The water reaches the required temperature.

QUESTION FOUR

This question is about a relay.
Match words from the list with each of the spaces $\mathbf{1} \mathbf{- 4}$ in the sentences.
coil
output
processor
switch

A relay can be used as \qquad 1 \qquad for an output device.

The \qquad 2. \qquad from an electronic system gives a small current.

This passes through the \qquad 3. \qquad of the relay.

In this way, the output device is controlled by the \qquad $4 . .$.

QUESTION FIVE

Capacitors can be used in electronic circuits.

Match words from the list with each of the spaces $\mathbf{1 - 4}$ in the sentences.

```
conductor
current
resistance
voltage
```

When a metal wire is connected across a charged capacitor, a $1 \ldots$. flows in the circuit.
The metal wire is a 2 \qquad

During the discharging process, the \qquad 3 \qquad across the ends of the capacitor decreases.

The greater the \qquad 4 of the discharging circuit, the longer this process takes.

SECTION B

Questions SIX and SEVEN.
In these questions choose the best two answers.
Do not choose more than two.
Mark your choices on the answer sheet.

QUESTION SIX

There are converging and diverging lenses.
Which two of the diagrams, $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ or \mathbf{T}, correctly show parallel rays of light passing through a lens?

QUESTION SEVEN

In a camera, the lens forms an image on a photographic film.
Which two of the following statements about a camera are correct?

the camera uses a converging lens

the camera uses a diverging lens
the image is further from the lens than the object
the image is magnified
the image is nearer to the lens than the object

TURN OVER FOR THE NEXT QUESTION

SECTION C

Questions EIGHT to TEN.
Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION EIGHT

The electronic system shown in the diagram lights a lamp automatically when it becomes dark. It also allows the lamp to be turned on manually at any time.

8.1 For \mathbf{X} you could use

A an AND gate.
B an LDR.
C a switch.
D a thermistor.
8.2 For Y you could use

A an LDR.
B a magnetic switch.
C a NOT gate.
D an OR gate.
8.3 For \mathbf{Z} you could use

A an AND gate.
B a motor.
C an OR gate.
D a switch.
8.4 The diagram shows another circuit with two logic gates combined.

Which row of the truth table, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is not correct for this system?

	Input R	Input S	Output
A	0	0	0
B	0	1	0
C	1	0	0
D	1	1	0

QUESTION NINE

The table and the diagram show the colour code for resistors.

$\mathbf{0}$	Black
$\mathbf{1}$	Brown
$\mathbf{2}$	Red
$\mathbf{3}$	Orange
$\mathbf{4}$	Yellow
$\mathbf{5}$	Green
$\mathbf{6}$	Blue
$\mathbf{7}$	Violet
$\mathbf{8}$	Grey
$\mathbf{9}$	White

9.1 What value of resistance is shown by the following code?

Band 1 Blue
Band 2 Grey
Band 3 Brown

A $\quad 68$ ohms

B $\quad 680$ ohms
C 68 kilohms

D 680 kilohms
9.2 What colour bands, from left to right, would be on a 56 ohm resistor?

A black green blue
B blue green black
C green blue black
D green blue brown
9.3 What colour bands, from left to right, would be on a 1 kilohm resistor?

A brown black brown
B brown black red
C brown brown red
D brown orange black
9.4 A thermistor does not have this colour code because

A it does not have a constant resistance.
B it is an input sensor.
C it is very small.
D its resistance is too high for the code.

TURN OVER FOR THE NEXT QUESTION

QUESTION TEN

The graph shows how the resistance of an LDR changes with light intensity.

10.1 What happens to the resistance of the LDR as the light intensity is increased?

A It decreases, quickly at first and then more slowly
B It decreases, slowly at first and then more quickly
C It increases, quickly at first and then more slowly
D It increases, slowly at first and then more quickly
10.2 What value of light intensity would give the LDR a resistance of 100 ohms?

A 2.7 units

B $\quad 3.0$ units

C 3.2 units

D $\quad 4.0$ units

The diagram shows a potential divider circuit.

10.3 What is the voltage across the LDR?

A $\quad 0 \mathrm{~V}$
B $\quad 2.5 \mathrm{~V}$
C $\quad 3.5 \mathrm{~V}$
D $\quad 6.0 \mathrm{~V}$
10.4 Use the graph and the potential divider circuit to answer this question.

What value of light intensity would give a $V_{\text {out }}$ of 3 V ?
A 2 units
B 3 units
C 4 units
D 5 units

END OF TEST

You must do one Tier only, either the Foundation Tier or the Higher Tier.
The Foundation Tier is earlier in this booklet.

HIGHER TIER

SECTION A

Questions ONE and TWO.
In these questions match the words in the list with the numbers.
Use each answer only once.
Mark your choices on the answer sheet.

QUESTION ONE

Capacitors can be used in electronic circuits.
Match words from the list with each of the spaces 1-4 in the sentences.

```
conductor
current
resistance
voltage
```

When a metal wire is connected across a charged capacitor, a $1 . \ldots$. flows in the circuit.
The metal wire is a 2..... .

During the discharging process, the 3 \qquad across the ends of the capacitor decreases.

The greater the \qquad 4 \qquad of the discharging circuit, the longer this process takes.

QUESTION TWO

The diagram shows a fire alarm circuit.
Match words from the list with each of the components $\mathbf{1 - 4}$ in the circuit.

controls the circuit's sensitivity

input sensor

output device
acts as a switch

TURN OVER FOR THE NEXT QUESTION

SECTION B
 Questions THREE and FOUR.

In these questions choose the best two answers.
Do not choose more than two.
Mark your choices on the answer sheet.

QUESTION THREE

In a camera, the lens forms an image on a photographic film.
Which two of the following statements about a camera are correct?
the camera uses a converging lens
the camera uses a diverging lens
the image is further from the lens than the object
the image is magnified
the image is nearer to the lens than the object

QUESTION FOUR

Eighty percent of the teenage and adult population of the UK now use mobile phones.
Which two of the following are major disadvantages of all types of mobile phone?

their batteries often need charging

they are always very expensive to use
they can only be used in one country
they distract car drivers
they need a network of unsightly transmission masts

SECTION C

Questions FIVE to TEN.
Each of these questions has four parts.
In each part choose only one answer.
Mark your choices on the answer sheet.

QUESTION FIVE

The electronic system shown in the diagram lights a lamp automatically when it becomes dark. It also allows the lamp to be turned on manually at any time.

5.1 For \mathbf{X} you could use

A an AND gate.
B an LDR.
C a switch.
D a thermistor.
5.2 For Y you could use

A an LDR.
B a magnetic switch.
C a NOT gate.
D an OR gate.
5.3 For \mathbf{Z} you could use

A an AND gate.
B a motor.
C an OR gate.
D a switch.
5.4 The diagram shows another circuit with two logic gates combined.

Which row of the truth table, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, is not correct for this system?

	Input R	Input S	Output
A	0	0	0
B	0	1	0
C	1	0	0
D	1	1	0

QUESTION SIX

The table and the diagram show the colour code for resistors.

$\mathbf{0}$	Black
$\mathbf{1}$	Brown
$\mathbf{2}$	Red
$\mathbf{3}$	Orange
$\mathbf{4}$	Yellow
$\mathbf{5}$	Green
$\mathbf{6}$	Blue
$\mathbf{7}$	Violet
$\mathbf{8}$	Grey
$\mathbf{9}$	White

6.1 What value of resistance is shown by the following code?

Band 1 Blue
Band 2 Grey
Band 3 Brown
A 68 ohms
B 680 ohms
C 68 kilohms
D 680 kilohms
6.2 What colour bands, from left to right, would be on a 56 ohm resistor?

A black green blue
B blue green black
C green blue black
D green blue brown
6.3 What colour bands, from left to right, would be on a 1 kilohm resistor?

A brown black brown
B brown black red
C brown brown red
D brown orange black
6.4 A thermistor does not have this colour code because

A it does not have a constant resistance.
B it is an input sensor.
C it is very small.
D its resistance is too high for the code.

TURN OVER FOR THE NEXT QUESTION

QUESTION SEVEN

The graph shows how the resistance of an LDR changes with light intensity.

7.1 What happens to the resistance of the LDR as the light intensity is increased?

A It decreases, quickly at first and then more slowly
B It decreases, slowly at first and then more quickly
C It increases, quickly at first and then more slowly
D It increases, slowly at first and then more quickly
7.2 What value of light intensity would give the LDR a resistance of 100 ohms?

A 2.7 units
B $\quad 3.0$ units
C $\quad 3.2$ units

D $\quad 4.0$ units

The diagram shows a potential divider circuit.

7.3 What is the voltage across the LDR?

A $\quad 0 \mathrm{~V}$
B $\quad 2.5 \mathrm{~V}$
C $\quad 3.5 \mathrm{~V}$
D $\quad 6.0 \mathrm{~V}$
7.4 Use the graph and the potential divider circuit to answer this question.

What value of light intensity would give a $V_{\text {out }}$ of 3 V ?
A 2 units
B 3 units
C 4 units
D 5 units

QUESTION EIGHT

The diagram shows a circuit in which a capacitor acts as an input sensor.

8.1 When the switch is in position $\mathbf{X} \ldots$....

A the capacitor is fully charged and the output of the logic gate is 0 .
B the capacitor is fully charged and the output of the logic gate is 1 .
C the capacitor is uncharged and the output of the logic gate is 0 .
D the capacitor is uncharged and the output of the logic gate is 1 .
8.2 The switch is now changed to position \mathbf{Y}.

What happens next?
A The capacitor starts to charge and the voltage across it falls
B The capacitor starts to charge and the voltage across it rises
C The capacitor starts to discharge and the voltage across it falls
D The capacitor starts to discharge and the voltage across it rises
8.3 What would give the greatest increase in the time taken for the output to change?

A Doubling the resistance of \mathbf{R} and doubling the capacitance
B Doubling the resistance of \mathbf{R} and halving the capacitance
\mathbf{C} Halving the resistance of \mathbf{R} and doubling the capacitance
D Halving the resistance of \mathbf{R} and halving the capacitance
8.4 When will the buzzer sound?

A Immediately, when the switch changes to position \mathbf{X}
B Some time after the switch changes to position \mathbf{X}
C Immediately, when the switch changes to position \mathbf{Y}
D Some time after the switch changes to position \mathbf{Y}

TURN OVER FOR THE NEXT QUESTION

QUESTION NINE

The diagram shows the circuit of an electronic control system.

9.1 In the dark,

A the resistance of \mathbf{S} is high and the input to \mathbf{U} is high.
B the resistance of \mathbf{S} is high and the input to \mathbf{U} is low.
\mathbf{C} the resistance of \mathbf{S} is low and the input to \mathbf{U} is high.
D the resistance of \mathbf{S} is low and the input to \mathbf{U} is low.
9.2 If \mathbf{S} and \mathbf{T} are interchanged, the system

A stops working.
B switches on in the dark.
C switches on in the light.
D works as before only if \mathbf{W} is reversed.
9.3 Component \mathbf{U} is removed from the original circuit, and the circuit is reconnected.

The system
A gives a much higher output.
B no longer works.
C switches on in the dark.
D switches on in the light.
9.4 The original circuit is changed to make a heater switch off when the temperature of a hot-water system becomes too high.

A suitable thermistor is put in place of
A \mathbf{S}
B $\quad \mathrm{T}$
C \mathbf{U}
D W

QUESTION TEN

The diagram shows a convex lens forming a virtual image. The diagram is drawn to scale.

10.1 The image is formed at

A \mathbf{P}
B $\quad \mathbf{Q}$
C R
D \mathbf{S}
10.2 The image is

A upright and larger than the object.
B upright and smaller than the object.
C upside down and larger than the object.
D upside down and smaller than the object.
10.3 The focus of the lens is at

A $\quad \mathbf{Q}$
B S
C T
D $\quad \mathrm{V}$
10.4 A real image could be produced with this lens by placing the object between.....

A $\quad \mathbf{P}$ and \mathbf{R}.
B $\quad \mathbf{R}$ and \mathbf{S}.
C $\quad \mathbf{S}$ and \mathbf{T}.
D $\quad \mathbf{T}$ and \mathbf{U}.

