GENERAL CERTIFICATE OF SECONDARY EDUCATION METHODS IN MATHEMATICS
Paper 1
(Higher Tier)

Candidates answer on the Question Paper
OCR Supplied Materials:

SPECIMEN

None
Other Materials Required:

- Geometrical instruments
- Tracing paper (optional)

Duration: 1 hour 15 minutes

| Candidate
 Forename | Candidate
 Surname | |
| :--- | :--- | :--- | :--- |

Centre Number						Candidate Number				

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is $\mathbf{6 0}$.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- This document consists of $\mathbf{1 6}$ pages. Any blank pages are indicated.

You are NOT permitted to use a calculator for this paper.

Formulae Sheet: Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$
Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 The diagram shows two vectors, \mathbf{a} and \mathbf{b}.
The vector $\mathbf{a}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

(a) Write \mathbf{b} as a column vector.
(a) \qquad
(b) Using the given vectors, describe a translation that moves P to another point on the same horizontal line.
(b)

2 A rugby club has 80 members.
In a rugby team, some of the players are 'forwards'; the rest are 'backs'.
32 of the members have played as forwards this season.
43 of the members have played as backs this season.
14 of the members have not played this season.
How many members have played as both forwards and backs this season? You must support your answer with evidence.

3 This is a one-centimetre grid with the point $P(-2,1)$ marked on it.

(a) Draw a straight line with a gradient of 2 through the point P.
(b) Write down the equation of the line in part (a).
(b)
(c) Write down the equation of a line parallel to the line in part (a).
(c)

4 Roshan, Simon and Tina are trying to estimate the probability that a student in their school is left-handed.
To do this, they select a number of students at random.
Their results are shown in this table.

	Roshan	Simon	Tina
Number of people selected	270	90	20
Number who are left-handed	30	15	8

The school has 1350 students.
Use these results to help you calculate the most reliable estimate for the number of left-handed students in the school.
(b) Assume Roshan's results are representative of the whole population of the United Kingdom.

Find the probability that two randomly chosen people from the United Kingdom are both left-handed.
(b)

5 Expressed as a product of its prime factors, $540=2 \times 2 \times 3 \times 3 \times 3 \times 5$.
(a) Express 252 as a product of its prime factors.
(a) \qquad [2]
(b) Find the lowest common multiple (LCM) of 540 and 252.
(b)
(c) Find the smallest integer k such that $540 k$ is a square number.
(c)

6 The grid has shape \mathbf{A} drawn on it.

(a) Rotate shape $\mathbf{A} 90^{\circ}$ anticlockwise about the point (1, -1). Label your image \mathbf{B}.
(b) Translate shape B by $\left[\begin{array}{r}-7 \\ 3\end{array}\right]$. Label your image \mathbf{C}.
(c) What single transformation will map shape \mathbf{C} onto shape \mathbf{A} ?

7 Set $A=\{n$: twice n has to be greater than -4 but less than or equal to 6$\}$ and Set $B=\{$ positive integers $\}$.
(a) Write the condition for n in set A as an inequality.
(a)
(b) Write down the elements of $A \cap B$.
(b)
8^{*} The largest angle in a triangle is 3 times the size of the smallest angle. The third angle is 37° less than the largest angle.
The smallest angle is x.
Find, in degrees, the angles of the triangle.

9 To take part in an expedition, Sayeed has to pass a medical test and then pass a fitness test. If he fails the medical he is not allowed to take the fitness test.

The probability that he passes the medical test is 0.9 . The probability that he passes the fitness test is 0.7 . These events are independent.

Is Sayeed's chance of taking part in the expedition better than evens? You must support your answer with evidence.

10

Not to scale
$D E$ is the tangent at B to the circle, centre O. $O A$ is parallel to $C B$.
Angle AOC $=140^{\circ}$
Find these angles.
(a) ACB
(a) \qquad [2]
(b) $A B C$
(b)
(c) $A B D$
(c)

11 (a) Simplify.
(i) $\frac{z^{6} \times z^{4}}{z^{-3}}$
(a)(i)
(ii) $6(3 x+4 z)-5(2 x-6 z)$
(ii) \qquad [3]
(b) Expand and simplify.

$$
(2 x-1)(3 x+2)
$$

(b) \qquad [3]
(c) Solve.
(i) $22-8 x=4$
(c)(i)
(ii) $\quad-3(x-4)+7 x=2(4 x+1)$

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

OCR ${ }^{\text {K }}$

AECDGNISING ACHIEVEMENT

Copyright Information

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
General Certificate of Secondary Education
METHODS IN MATHEMATICS
B391/02
Paper 1 (Higher)
Specimen Mark Scheme
The maximum mark for this paper is $\mathbf{6 0}$.

$\mathbf{1}$	(a)	$\left[\begin{array}{l}-1 \\ -2\end{array}\right]$	$\mathbf{1}$	
	(b)	$\mathbf{a + b}$	$\mathbf{2}$	Accept any multiple of this Allow 1 mark for answer that has positive coeffs of both \mathbf{a} and \mathbf{b} or negative coeffs of both a and b. Allow 1 mark for ft from 'their' (a)
$\mathbf{2}$				

	(c)	rotation 90° anticlockwise oe about (-4, -3)	M1 A1	
7	(a)	$\begin{aligned} & -4<2 n \leq 6 \\ & -2<n \leq 3 \end{aligned}$	2	1 for one error in ${ }^{-} 4,2 n$ or 6 . For 1 mark do not worry about signs.
	(b)	123	2	1 mark for one of these and no others, or all three and one or two extras
8*		Complete and fully correct working to arrive at the angles $31^{\circ}, 56^{\circ}$ and 93° presented in a clear, logical and well expressed form. Good answers will most likely come from algebra, based on $x+3 x+3 x-37^{\circ}=180^{\circ}$, or equivalent, though any other correct method, including Trial and Improvement, can score full marks. A correct algebraic equation, or other appropriate method, together with an attempt at a reasoned explanation, attempted but incomplete or with minor errors in working. No relevant comment or calculation shown.	3-4 1-2 0	For lower mark - Complete and correct working that provides a solution with one slip in working at any stage (allow follow through) or complete and fully correct working lacking clarity of explanation. For lower mark - An algebraic equation, not solved, with no explanation or other appropriate method attempted eg trial and improvement with at least two trials with no explanation.
9	(a)	If done by tree diagram: 0.9 and 0.1 positioned correctly 0.7 and 0.3 positioned correctly 0.63 better that evens ft	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	If not done by tree diagram, award B1 for identifying and using 0.9 and B1 for identifying and using 0.7 M1 for 0.9×0.7
10	(a)	20°	2	B1 for angle ACO or CAO $=20$ seen
	(b)	110°	2	B1 for reflex angle AOC $=220$ seen
	(c)	20° or their (a)	1ft	
11	(a)	(i) z^{13}	1	
		(ii) $18 x+24 z-10 x+30 z$ seen $8 x+54 z w w w$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for $18 x+24 z$ or $-10 x-30 z$ cao
	(b)	$\begin{aligned} & 6 x^{2}+4 x-3 x-2 \\ & 6 x^{2}+x-2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	Allow 1 for three correct terms cao

Assessment Objectives

GCSE Methods in Mathematics

B391/02 (Higher)

Qn	AO 1	AO 2	AO 3
1	1	2	
2			4
3	4		
4		6	
5	2	4	
6	3	4	
7	4		
8^{*}			4
9			5
10	5		
11	12		
12			
TOTAL	31	16	13

