Methods in Mathematics (Pilot)

General Certificate of Secondary Education
Unit B392/02: Higher Tier

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
\mathbf{x}	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.

The M, A, B, etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

M marks are for using a correct method and are not lost for purely numerical errors.
A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are awarded for a correct final answer or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.

Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT
 (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question

Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.

The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line even if it is not in the method leading to the final answer.
- soi means seen or implied.

Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.

As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).

When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for A and B marks. Deduct 1 mark from any A or B marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.

Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75 .

If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. If the answer is missing, but the correct answer is seen in the body allow full marks. If the correct answer is seen in working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded

Ranges of answers given in the mark scheme are always inclusive.
For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.

Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question			Answer	Marks	Guidance	
1	(a)		3.24 isw	2	M1 for 0.15×21.60 or eg using 10% and 5% with $10 \%=2.16$ or $1 \%=0.216$ then $\times 15$ or SC1 for 18.36 or 0.85×21.60	eg $10 \%=2.16$ and $5 \%=$ 1.06 and adding their values
	(b)		$£ 6.63$	2	M1 for 0.13 or 13 p or 6.5×1.02 or 6.5×0.02	
	(c)		16 \%	3	```M2 for 4 }\div25\mathrm{ or 0.16 or 29 }\div25\mathrm{ or 1.16 or 4 % 0.25 oe or M1 for 4 used or 1% of 25=0.25```	$\text { eg } 4 \div 29$ 4 used could be 29-25 as a numerator but an answer of 4% scores 0
2	(a)	(i)	5, 11	2	B1 for 5 or 11 or for -1 and 5 (using $n=0$ and 1)	
		(ii)	16	3	M2 for 16.8[333...] or 101/6 seen or at least one value of n over 16 tried along with at least one below 16 (not 1 or 2) or M1 for $6 n-1=100$ or $6 n-1<100$ or at least two values of n tried (not 1 or 2) or SC2 for 17 following -1 and 5 in part (a)(i) After M0 award SC1 for answer of 17	Solution by T\&l is fine.

Question			Answer	Marks	Guidance	
	(b)		$3 n+2$	2	M1 for 3n	
3	(a)		$\sqrt{2^{2}+3^{2}}=\sqrt{13}=3.6(0555)$	3	$\mathbf{M} 2$ for $\sqrt{2^{2}+3^{2}}$ or M1 for $2^{2}+3^{2}$ or right angled triangle with 2 and 3 shown or Pythagoras using 2 and 3 and A1 for 3.60.....or 3.61 (at least 2dp)	Note: answer given in question so working must be seen. For A1, must score at least M1
	(b)		11.3 to 11.33	2	M1 for 3.1... 3.6 or for $3.1 \ldots \times$ their (a)	
4	(a)		-3.5 or -7/2 oe	2	M1 for $x+5=1.5$ or $2 x+10$ [=3] or FT their first step to a "correct" answer	Improper fractions as answers must be simplified
	(b)	(i)	$m=d v$	1		
		(ii)	$b=\frac{2 A}{h}$	2	$\begin{aligned} & \text { Condone } b=A / 0.5 h \text { or } b=A / 11 / 2 h \\ & \text { M1 for } b h=2 A \text { or } \frac{1}{2} b=\frac{A}{h} \\ & \text { SC1 for } h=2 A / b \end{aligned}$	
5	(a)		26.5	2	M1 for $15.9 \div 6$ or $15.9 \div 3$ oe soi by $2.65(\times 10)$ or $5.3(\times 5)$	
	(b)		8	2	FT their 26.5 for M1 A1 M1 for $23 \div 2.65$ oe or 9 or $8.679 \ldots$ or $23 \div$ (their 26.5/10)	$\begin{aligned} & \text { eg } 23 \times 6 \div 15.9 \text { scores } \\ & \text { M1 } \end{aligned}$
6	(a)	(i)	27.98[41] isw	1		Allow 28.0 but not 28

Question			Answer	Marks	Guidance
		(ii)	12000	1	Allow answer in standard form
	(b)		35:38	2	M1 for division by 5 attempted or non-integer answers eg $87.5: 95,17.5: 19$, 1 : 1.08...., 0.921..: 1, etc.
7*			Correct answer (250) with complete correct working eg $(4+1) \times 5 \times 10$.	4	Working correctly communicated in stages is acceptable for 4 marks eg $4+1=5,5 \times 5=25,25 \times 10=250$. Full written explanation is also acceptable. 3: The working is correct but no final answer stated $(4+1) \times 5 \times 10$ or the working is poorly communicated but is clear eg $4+1=5 \times 5=25 \times 10=250$ or number greater than 200 with complete correct working. 2: 250 with no (or incomplete) working or for acceptable number over 200 with poorly communicated working 1: Acceptable number greater than 200 with no, or incomplete, working or for $(4 \times 5) \times 10[\times 1]$ condoning error in calculation or for two trials leading to numbers below 200 (condone poor communication). or acceptable calculation with their answer minimum 200 but error in evaluation 0: 200 with no working gets zero For 1 or 2 marks 'acceptable' implies number, minimum 200, that can be made.

Question		Answer	Marks	Guidance	
8	(a)	$x=20, y=30$	5	M2 for at least two of $\begin{aligned} & x+3 y+70=180 ; \quad x=y-10 \\ & 3 y+70+y-10=180 \text { oe } \end{aligned}$ or M1 for one of these equations and M1 for getting a correct, simplified equation in just one variable eg $4 y+60=180$ A1 $x=20$ A1 $y=30$	```Alternative M1 for \(3 y+70+y-10=\) 180 and M1 for simplifying and A1 \(y=30\) M1 \(x=y-10\) A1 \(x=20\)```
	(b)	$c=128 \frac{4}{7}, d=77 \frac{1}{7} \mathbf{o e}$	5	M1 for angle sum of heptagon or exterior angle of heptagon and M1 for sum $\div 7$ or 180 - ext angle and A1 exact angle c and M1 for use of isosceles triangle and A1 for angle d (can be decimal to at least 1dp - rounded or truncated) or B4 for answers of 128.6 and 77.2	Condone 360/7 seen for M1 128.5 to 128.6 implies M2 (FT their angle c for M1A1)
9		67.4	3	M2 for $\tan ^{-1} 14.4 / 6$ or M1 for $\tan \mathrm{R}=\frac{14.4}{6}$ oe or M1 for use of their inverse trig function eg	Use of radians leading to 1.176...or gradians leading to 74.8668scores M2

Question		Answer	Marks	Guidance	
13		$\frac{4}{33}$ or $\frac{12}{99}$ oe (must be fraction)	2	M1 for 0.12 or 0.1212 or $\frac{5}{11}$ oe	
14		HF = FJ sides of square GF = FE sides of square angle HFG $=$ angle JFE $=90^{\circ}$ or (vertically) opposite triangles are congruent SAS	3	M2 for all three statements with reasons or M1 for all three statements with no reason or for 2 statements with reasons and A1 for SAS (dep. on three statements with, or without, reasons)	After two correct sides given allow: $\mathrm{GH}=\sqrt{ }\left(\mathrm{HF}^{2}+\mathrm{GF}^{2}\right)$ and $E J=\sqrt{ }\left(F J^{2}+F E^{2}\right)$ then SSS (or poss. RHS)
15	(a)	12.5	4	M3 for $m=5 \sqrt{p}$ or $5 \times \sqrt{6.25}$ or M2 for $k=5$ or M1 for $m=k \sqrt{p}$ or $10=\mathrm{k} \sqrt{ } 4$ or SC1 for $m=5 p^{2} / 8$ or $m=20 / \sqrt{ }$ p and SC1 FT to $24.4 \ldots$... or 8	For M1 condone $10 \times \mathrm{k} \sqrt{ } 4$
	(b)	400	2	M1 for $100=5 \sqrt{p}$ FT from their formula, or their k, for M1 A1 (dep on formula involving either a square or a square root)	FT from SC in (a) to 12.6.. or 25

Question		Answer	Marks	Guidance	
16	(a)	8.37 to 8.38 isw	3	M1 for 37.6 to 37.7 or $2 \times \pi \times 6$ and M1 for $\frac{80}{360}$ oe A1 8.37 to 8.38 or 8.4	Answer to at least 1 dp or in terms of π (ie $8 \pi / 3$)
	(b)	77.1 to 77.3	4	M1 for $2 \pi r=$ their (a) A1 FT for radius of base circle (r) M1 for $\cos \theta=\frac{\text { their }(r)}{6}$ A1 77.1 to 77.3 or 77	(their(a))/2 π soi by figs 1333.... 1.3333... Use of eg Pythagoras followed by sine rule - FT their (r) Use of radians leading to 1.3467...or gradians leading to 85.73379....scores M1 A1 M1
17		 Correct curve, reasonably smooth, between 0 and 360 .	2	M1 for indication of correct turning points and intersections on x axis or for $\cos [\theta]$ SC1 for reflection in $h=0$ or sin curve	eg allow M1 for $h=$ $1.5 \cos \theta$ drawn

Question		Answer	Marks	Guidance	
18	(a)	40	2	M1 for $\frac{1}{3} \times 4^{2} \times 7.5$	
	(b)	35	4	M1 for "pyramids similar" (may be implied by calculating corresponding lengths) M1 for length sf = 2 soi (eg by 3.75) M1 for vol sf $=8$ seen or small pyramid vol $=5\left(\mathrm{~cm}^{3}\right)$ oe	Vol. of small pyramid $=5$ or $\frac{7}{8} \times$ their (a) implies first 3 marks. Alternative: It is possible to do this by splitting the frustum into a cuboid, 4 prisms and 4 pyramids. Allow B1 for each different correct volume: 15, 3.75, 1.25.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

