RECOGNISING ACHIEVEMENT

GCSE

Methods in Mathematics (Pilot)

General Certificate of Secondary Education
Unit B392/01: Foundation Tier

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Subject-Specific Marking Instructions

1. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are awarded for a correct final answer or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' $377^{\prime}+16$), or FT $300-\sqrt{ }\left(\right.$ their ${ }^{\prime} 5^{2}+7^{2}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1		$\begin{array}{rrr} \hline 13 & 17 & 21 \\ 20 & 40 & 80 \\ 37 & 109 & 325 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 for 37 as $3^{\text {rd }}$ term	
2	(a)	8.6	1		
	(b)	17	1		
	(c)	4096	1		
	(d)	645	2	M1 for 215 or 2580 or 0.75	
3		9 tiles used with rhombus drawn and labelled parallelogram drawn and labelled trapezium drawn and labelled	6	B5 for 9 tiles used, 3 correct drawings and 2 correct labels or for more than 9 tiles used and rhombus, parallelogram and trapezium drawn and labelled. or B4 for 9 tiles used, 3 correct drawings and 1 correct label or 2 correct drawings and 2 correct labels. or B3 for 9 tiles used, 3 correct drawings and 0 correct labels or 2 correct drawings and 1 correct label. OR Mark best 2 quadrilaterals - for each M1 for rhombus or parallelogram or trapezium drawn A1 for correct label	Do not allow "part" tiles Condone parallelogram label for drawing of rhombus if parallelogram label not used for other shapes. Condone kite label for drawing of rhombus.

Question			Answer	Marks	Part marks and guidance	
4	(a)		22	1		
	(b)	(i)	Rectangle with perimeter 22 cm and area > 18cm ${ }^{2}$	2	B1 for rectangle perimeter 22 cm but area $<18 \mathrm{~cm}^{2}($ eg 10 by 1)	Mark the dimensions written on diagram. Condone inaccurate diagram. If no dimensions measure their rectangle. Allow square side 5.5 cm
		(ii)	Area FT their rectangle cm^{2}	$\begin{gathered} \hline \text { 1FT } \\ 1 \end{gathered}$		
5	(a)*		Explanation Clear concise explanation referring to a quadrilateral being made from 2 triangles and that the sum of the angles of a triangle is 180°.	2	1 for incomplete explanation eg splitting of quadrilateral into 2 triangles described but no reference to 180°	
	(b)		$\begin{aligned} & {[\mathrm{b}=] 125^{\circ}} \\ & {[\mathrm{c}=] 55^{\circ}} \\ & {[\mathrm{d}=] 55^{\circ}} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	If $\mathbf{0}$, for \mathbf{c} and d , allow $\mathbf{S C 1}$ for both (360-125 - their b)/2	
6	(a)		$\begin{aligned} & \text { A plotted at }(-1,4) \\ & \text { B plotted at }(5,7) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	SC1 for plots at (4,-1) and (7,5)	Condone A and B omitted Condone extra point if it is clearly an attempt at mid-point
	(b)		(2, 5.5)	2	M1 for midpoint marked or one coordinate correct or FT their AB for 1 or 2 marks	

Question			Answer	Marks	Part marks and guidance	
7	(a)	(i)	60	1		
		(ii)	sum of their corner numbers	1FT		
		(iii)	Description: eg the sum of corner numbers is 4 times the middle number	2	M1 for 60 'paired' with 15 and their (ii) 'paired' with their middle or incomplete description.	For 2 marks condone omission of 'sum of corner' or middle number. eg Divide your answer by 4 you get the middle number scores 2. eg It is a quarter of it scores M1.
	(b)	(i)	$x+11 \quad x+20 \quad x+22$	2	B1 for 2 terms correct	
		(ii)	$4 x+44$	2	M1 for their $x+x+2+x+20+x+22$ SC1 for $3 x+53$ or $5 x+55$	Allow 4(x+11)
		(iii)	$4 \times(x+11)=4 x+44$ or $4 x+44=4(x+11)$	2	M1 for $4 \times$ their expression for the middle attempted.	Condone $x+11 \times 4$ for M1
8			$\begin{array}{ccc} \hline \frac{1}{4} & 0.25 & \\ \frac{1}{20} & & 5 \% \\ & 0.4 & 40 \% \end{array}$	4	B4 for all correct or B3 for 4 or 5 correct or B2 for 3 correct or B1 for 1 or 2 correct	

Question		Answer	Marks	Part marks and guidance	
9*	(a)	-2	1		
	(b)	Acceptable answer of $\frac{8}{3}$ or $\frac{40}{15}$ or 2.66 or 2.67 (or better) supported by correct and coherent algebraic statements.	3	isw from their acceptable answer 2 for acceptable answer or 2.6 or 2.7 obtained but algebraic statements are inadequate or incorrect solution arising from one error in working but supported by coherent algebraic statements or 1 for incorrect solution but evidence of correct expansion of brackets or division by 5 or at least one correct step.	Allow flow diagram or equivalent evidence for 'correct and coherent algebraic statements'
10	(a)	60	2	M1 for $3 \times 4 \times 5$	
	(b)	220	3	M2 for $4 \times 5 \times 8+$ their (a) or $4 \times 5 \times 5+4 \times 3 \times 5+$ their (a) or M1 for solid split into 2 cuboids with 8 cm 'on vertical' or 'on horizontal' or 3 cuboids with appropriate dimensions shown on diagram or in attempt at volume or c/s area or 'their L area' $\times 5$ or $4 \times 8 \times 5$ or $3 \times 8 \times 5$ or $100+$ their (a) or 160 A1 for 220 or FT '160 + their 60'	$\begin{aligned} & {[160]+(a)} \\ & 100+60+(a) \end{aligned}$

Question		Answer	Marks	Part marks and guidance	
11	(a)	Line through $(10,16),(20,32)$ and $(50,80)$	2	M1 for 2 points plotted from table	
	(b)	Leo by 25 miles or 40 km	4	M2 for $840 \mathrm{~km}=525 \mathrm{miles}$ or $550 \mathrm{miles}=880 \mathrm{~km}$ or use of graph to convert 840 km to miles or 550 miles to km or M1 for attempt to use table or graph for relevant conversion eg 1 mile $=1.6 \mathrm{~km}$ from table or $84 \mathrm{~km}=\ldots$ miles from graph AND A2 for Leo by 25 miles or 40 km or FT their graph readings if M2 scored or or A1for Leo by 25 or 40 or FT if M2 scored or B1 for correct choice and difference FT their readings or calculations	eg 84 km 52 miles, 840 km 520 km FT graph reading ± 1 mile or 1 km eg 1 mile $=1.6 \mathrm{~km}$ from table or $84 \mathrm{~km}=\ldots$ miles from graph (Do not ft use of graph through $(0,0)$ and $(80,80))$ For B1 condone omission of km or miles
12		False $\frac{1}{3}=0.33 \ldots$ [bigger than 0.3] True $\left(\frac{1}{5}\right)^{2}=\frac{1}{25}$ [smaller than $\frac{1}{5}$]	2 2	B1 0.33(...) [=1/3] For 2 marks contradiction in justification not accepted. B1 for $\frac{1}{25}$ or 0.04 [For $\left(\frac{1}{5}\right)^{2}$] For 2 marks contradiction in justification not accepted If 0,0 scored, SC1 for False, True	eg False they are the same. $\frac{1}{3}=$ 0.33 scores 1 only.

Question			Answer	Marks	Part marks and guidance	
13	(a)		15 [hours] 50 [mins]	2	M1 for 4 hours 45 mins or 3 hours 50 mins or clear method with minor error	
	(b)	(i)	One hundred [and] thirty thousand four hundred	1		
		(ii)	6 to 6.4 or 8	2	M1 for $825400 \div 130400$	
	(c)		True supported by correct working eg England is $6.7 \times$ pop'n London and Namibia is $7.8-7.9 \times$ pop'n Windhoek	2	ALT London 14.9-15\% of England and Windhoek $12 \cdot 6-12 \cdot 7 \%$ or 13% of Namibia. M1 for either method used but with error	Accept use of estimation methods
14			C B A and E D $1: 6$ $2: 10$ $1: 4 \quad 3: 12$ $1: 3$	3	B2 for C B A E D orCBEAD or $D A$ and $E B C$ or B1 for C weakest or D strongest or M1 for B and E simplified to $1: 5$ and 1:4	A and E the same may be implied by working
15	(a)		108	2	M1 for [ext angle] = 360/5 or 72 soi or [sum of interior angles =] 3×180 or 540	Allow 6×90 from $(2 n-4)$ right angles for M1
	(b)		Explanation: eg $3 \times 108^{\circ}<360^{\circ}$ or $4 \times 108^{\circ}>360^{\circ}$ or 108 does not go into 360 oe or a correct labelled diagram showing 108, 108, 108 and 36	2	B1 for 3 angles at a point <360 or B1 for 4 angles round a point > 360 or B1 for their (i) does not go into 360 or M1 for unlabelled diagram showing an attempt at 3 pentagons plus a "gap"	Max B1 if angle not 108° (Any explanation without numbers will score a maximum of 1 mark)

Question		Answer	Marks	Part marks and guidance	
16		$[x]=\frac{y+9}{5}$	2	M1 for $y+9=5 x$ oe (eg $\frac{y}{5}=x-\frac{9}{5}$) SC1 for answer of $y+9 \div 5$ or $y+\frac{9}{5}$ or $\frac{y}{5}+9$ or for incorrect versions of $\frac{ \pm y \pm 9}{ \pm 5}$	NB There is no FT mark from wrong 1st step eg $7 y=4 x$ then $x=1.75 y$ scores 0 Allow M1 for correct reverse flow chart (ie correct operations and clearly in correct order eg as shown by arrows)
17		$8.48-8.49$ or 8.5	3	M2 for $\sqrt{72}$ OR $\sqrt{9^{2}-3^{2}}$ or 8.4(...) or M1 for a Pythagoras statement and A1 for 8.5 SC1 for $\sqrt{9^{2}+3^{2}}$ soi by eg $\sqrt{ } 90$ or 9.4 to 9.5	$\text { eg } 3^{2}+A C^{2}=9^{2}$ Allow M2 for 8.4(..). from scale drawing
18		101	3	M2 for $2 n+1$ or add on 2×47 or $50+51$ or M1 for tabulation of term and number of sticks or 'goes up by 2' or $n^{\text {th }}$ term $=2 n+c$	

Question		Answer	Marks	Part marks and guidance	
19	(a)	2, 0, 2, 6	2	B2 for all values correct or B1 for 2 values correct	
	(b)		1 1	B1 for at least four of their points correctly plotted B1 for smooth curve through correct points, below x - axis at vertex	Tolerance $= \pm 1 \mathrm{~mm}(1 / 2$ square $)$ Tolerance $= \pm 2 \mathrm{~mm}$ (1 square) (Condone one occurrence of multiple lines)
	(c)	-2.8, 1.8 (both ± 0.1)	2	B1, B1 (or FT their curve) If 0 scored, $\mathbf{M 1}$ for evidence of reading from $y=5$	Accept any answers given as part of a co-ordinate

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

