шјес
cbac

GCSE MARKING SCHEME

JANUARY 2016

MATHEMATICS UNITISED - UNIT 1 HIGHER TIER
 4351/02

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

$\begin{gathered} \text { January } 2016 \\ \text { UNIT } 1 \text { Higher } \end{gathered}$	Mark	FINAL MARK SCHEME Comments (Page 1)
$\text { 1. } \begin{aligned} (\text { Area }=) & \frac{70+100}{2} \times 40 \text { OR } \frac{40 \times 30}{2}+(70 \times 40) \\ = & 3400\left(\mathrm{~m}^{2}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ 2 \end{gathered}$	
2. (a) Line starts at $(0,20)$. A straight line with gradient $2^{\circ} \mathrm{C} / \mathrm{sec}$. A straight line from $(30,80)$ to $(40,80)$. A straight line from $(40,80)$ to $(60,20)$. (b) $\quad 60\left({ }^{\circ} \mathrm{C}\right)$ in 20 (seconds) or equivalent. 3	B1 B1 B1 B1 $\begin{gathered} \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	Accept plot if no line drawn. Need not end at $(30,80)$ BUT see below. F.T. from 'their $(30,80)$ '. F.T. 'their $(40,80)$ ' . Ignore any line drawn beyond 60 seconds. Penalise -1 once only if no straight lines drawn between plots. If all four B1s gained but graph incorrect (e.g. first line did not end at $(30,80)$ penalise -1 . OR FT from their graph
3. $2 \cdot 9$	$\begin{gathered} \hline \text { B2 } \\ 2 \\ \hline \end{gathered}$	B1 for 2•8(8.....)
4(a) Attempt at $\begin{align*} & 5 \times 4+8 \times 6+9 \times 7+13 \times 1 \tag{144}\\ & \div 18 \quad=8 \text { (medals) } \end{align*}$ (b) Sharks because the highest possible number in the Dolphins is 12.	M1 m1 A1 E1 4	M1 for the attempt at $\sum f x$. C.A.O. Unsupported answer of 8 is M0m0A0. Must refer to ' 12 ' for E 1 to be awarded.
5. Attempt at using Speed $=$ distance $/$ time. $($ Average speed $=) 10 / 1 / 3$ or equivalent $=30(\mathrm{mph})$ Yes he could have gone over the speed limit as the 30 mph is only an average speed. E.g. 'Yes because it's only an average (speed)' (E1) 'Yes, he could have gone faster, then slower' (E1) BUT 'Yes he could have gone faster'. (E0).	M1 m1 A1 E1	e.g. 10 (miles) / 20(min) or 10 / 'their time difference'. C.A.O. Independent mark. Must state, or unambiguously imply, 'Yes' AND give a clear explanation. FT 'their average speed' provided it is 40 mph or less.
6. $\begin{aligned} \hline(\text { Volume }=) & \pi \times 5^{2} \times 14 \\ & =1099 \cdot 5(. .)\left(\mathrm{cm}^{3}\right) \text { or } 350 \pi . \end{aligned}$ 'Yes' because 1 litre is (only) $1000 \mathrm{~cm}^{3}$	M1 A1 B1 3	Accept answers between 1099 and 1100 inclusive. F.T. from 'their derived cylinder volume'. 350π must be evaluated for comparison. Must indicate that 1 litre equals $1000\left(\mathrm{~cm}^{3}\right)$. 'Yes' may be implied.
7. $\quad 5720.171 .6(0)$ $6068.34(8)$ or 6068.35 OR 171.6(0) and 176.74(8) (£) 348.35	B1 M1 A1 A1 4	For a correct evaluation of 3\% OR Sight of 1.03 (343.2 implies 2×171.6 and gains B1). For correctly attempting to find 2 different 3%. OR 5720×1.03^{2}. F.T. one error. Must be given correct to the nearest penny. (£) 348.34 is B1M1A1A0. Treat depreciation as a misread.

\begin{tabular}{|c|c|c|}
\hline January 2016 UNIT 1 Higher \& Mark \& FINAL MARK SCHEME Comments (Page 3) \\
\hline \begin{tabular}{l}
9. Strategy to find (Fractional or \% or actual) return for either currency. \\
(\$) \(0 \cdot 88(04 .\).\() or 88(\cdot 04 . . \%)\) (Return) \\
(peso) \(0 \cdot 90(15 .\).\() or 90(\cdot 15 . . \%)\) (Return) \\
More is lost on the Dollar (\$)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1 \\
4
\end{tabular} \& \begin{tabular}{l}
E.g. \(\frac{1.62}{1.84}(\times 100)\) or \(\frac{20.24}{22.45}(\times 100)\) \\
OR using \(£ x\)
\[
£ x \times \frac{1.62}{1.84} \text { or } £ x \times \frac{20.24}{22.45}
\] \\
If \(x=£ 100, £ 88(.04)\) return or \(£ 11.96\) (or \(£ 12\)) lost. If \(x=£ 100, £ 90(.16)\) return or \(£ 9.84\) (or \(£ 10\)) lost. Allow rounding, from a correct calculation, as long as a correct comparison is still possible. \\
F.T. their calculated amounts.
\end{tabular} \\
\hline \[
\begin{aligned}
10.5 \times \frac{21}{15} \& \\
\& \times \frac{8}{6}
\end{aligned} \quad \begin{aligned}
\& \\
\& =9.3(\ldots .) \quad 10 \text { (cleaners required) }
\end{aligned}
\] \& \begin{tabular}{l}
A1 \\
A1 \\
4
\end{tabular} \& \begin{tabular}{l}
M2 for correct use of the ' 5 ' with all four of the numbers \(21,15,8\) and 6. \\
M1 for correct use of the ' 5 ' with any two of the numbers 21, 15, 8 and 6 . \\
C.A.O. Pre approximation that does not lead to 9.3 is A0 F.T. provided at least M1 gained and rounding up of 'cleaners' required.
\end{tabular} \\
\hline \begin{tabular}{l}
11. A correct strategy. \\
'Their 9h 40m' \(+18: 00-5\) (hours) \\
OR 'their 03:40' -5 (hours) \\
YES (as they finish their slot at) 22:40 (NY time) or equivalent unambiguous statement.
\end{tabular} \& S1

M1

A1

3 \& | e.g. |
| :--- |
| Attempt to add times $20 \mathrm{~m}+1 \mathrm{~h}+7 \mathrm{~h} 20 \mathrm{~m}+40 \mathrm{~m}+20 \mathrm{~m}$ (= 9h 40m) |
| OR Attempt to find 'time steps' $18: 00,18: 20,19: 20$, 02:40, 03:20, 03:40. |
| For the S1 and M1 do not penalise incorrect calculation or if final 20 m session omitted. |
| For a correct attempt at addressing the 5 hour time difference. |
| The 5 hours may be subtracted at any point along the 'time steps'. |
| A0 if any incorrect calculations made. (No F.T.) 'YES' must be stated or implied. Allow sight of 22:20 as final time calculation if clear implication made that there is enough time to perform. |
| Allow ' $10: 40$ ', for this question, to infer ' $10: 40$ p.m.'. |

\hline | 12(a) $\quad \frac{451}{55} \times 100$ or equivalent $=(£) 820$ |
| :--- |
| (b) |
| (£) $48 \times \frac{3}{4} \quad$ or equivalent $=(\mathfrak{f}) 36$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| 4 | \& | M1A0 for premature approximation. |
| :--- |
| E.g. ' $48 \div 1 \cdot 33=£ 36.09$ ' or ${ }^{\prime} 48 \div 1 \cdot 3=£ 36.92$ '. |

\hline
\end{tabular}

	$\begin{gathered} \text { January } 2016 \\ \text { UNIT } 1 \text { Higher } \end{gathered}$	Mark	FINAL MARK SCHEME Comments (Page 4)
13(a)	$14 \text { (minutes) }$	B2	From $3 \mathrm{~h} 71 / 2 \mathrm{~m}-2 \mathrm{~h} 53^{1 / 2 m}$ or equivalent. OR from for $3 \mathrm{~h} 7 \mathrm{~m}-2 \mathrm{~h} 54 \mathrm{~m}+1 \mathrm{~m}$ B1 for a correct time difference of 'a time $>3 \mathrm{~h} 7 \mathrm{~m}$ ' - 'a time $<2 \mathrm{~h} 54 \mathrm{~m}$ '. (But only if the times used are seen). OR $3 \mathrm{~h} 71 / 2 m-2 \mathrm{~h} 531 / 2 m$ attempted, but not evaluated correctly OR B1 for 3h 7m - $2 \mathrm{~h} 54 \mathrm{~m}+1 \mathrm{~m}$ attempted, but not evaluated correctly.
(b)	Sight of $\sqrt{ } 756 \cdot 25$ $=27 \cdot 5(\mathrm{~m})$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
	$(\text { So least length }=) \begin{aligned} & 26 \cdot 5(\mathrm{~m}) \\ & (\text { Least area }=) 702 \cdot 25\left(\mathrm{~m}^{2}\right) \end{aligned}$	$\begin{gathered} \text { A1 } \\ \text { A1 } \\ 6 \end{gathered}$	
14(a)	$(\text { Arc length }=) \frac{42}{360} \times 2 \times \pi \times 30$		
	$=21.9 \ldots(\mathrm{~cm})$ or $22(\mathrm{~cm})$ or 7π	A1	
	$($ Perimeter $=) 82(\mathrm{~cm})$	B1	F.T. 'their derived $22^{\prime}+60$. Mark final answer.
(b)	$\frac{x}{360} \times \pi \times 30^{2}=534$	M1	
	$x=\frac{534 \times 360}{\pi \times 30^{2}}$	m1	
	$=68\left({ }^{\circ}\right)$	$\begin{gathered} \text { A1 } \\ 6 \end{gathered}$	Allow 67.9(..). Mark final answer.
15.	Sight of ${ }^{2 / 3 \pi r^{3}}$ AND (2r) ${ }^{3}$	B1	
	$2 / 3 \pi r^{3}+(2 r)^{3}=1261 \cdot 8$	M1	F.T. only if volume of hemisphere $=a \pi r^{3}$ AND volume of cube $=\mathrm{b} r^{3}$ where a and b are constants $(\neq 0)$.
	$r^{3}=125$	A1	C.A.O.
	$r=5$	A1	F.T cube root of 'their 125 ' if M1 awarded.
	$d=15(\mathrm{~cm})$	$\begin{gathered} \text { B1 } \\ 5 \end{gathered}$	

