шјес
cbac

## GCSE MARKING SCHEME

JANUARY 2016

APPLICATIONS OF MATHEMATICS
UNIT 2 - HIGHER TIER
4362/02

## INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE APPLICATIONS OF MATHEMATICS UNIT 2 - HIGHER TIER

MARK SCHEME - JANUARY 2016

| Applications Unit 2 Higher Tier January 2016 |  | Final |
| :---: | :---: | :---: |
| 1(a) $760+0.26 \times 760$ or $1.26 \times 760$ or equivalent <br> (£) $957.6(0)$ | $\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$ | Accept 26.499999... Do not accept 26.49 |
| (b) Greatest $26.5(\mathrm{~cm})$ <br> Least 25.5 (cm) | B1 |  |
| (c) $460-0.16 \times 460(=460-73.60=386.4(0))$ | M1 | OR M2 for $460 \times 0.84^{2}$ or M1 for $460 \times 0.84(=386.4)$ |
| $\begin{aligned} & 386.4-0.16 \times 386.4(=386.4-61.82(4)=(£) 324.576) \\ & (£) 324.58 \text { or }(£) 324.57(.) \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | FT their 386.4 , but not 460 CAO. Penalise further working -1 Total marks to award for common errors: Appreciation: SC1 for 533.6(), (£)618.97(6) Simple depreciation: M1 for 312.8(0) |
|  | 7 |  |
| $\underline{2}(\mathrm{a})(£) 36000$ or (£)36 thousand | B1 | B0 for 36 |
| (b) Advertising (£) 8000 or (£)8 thousand AND Sales (£) 30000 or (£)30 thousand (and indication on the scatter diagram) | B2 | B1 for 8 AND 30 or appropriate indication on the diagram |
| (c) Line of best fit with appropriate trend shown | B1 |  |
| (d) Use of their gradient of the line of best fit | M1 |  |
| Gradient answer in the range (£)5 to (£)8 | A1 | When indication on the diagram or working seen, allow SC1 for an answer derived from use of ratio or proportion sales : advertising for any point (other than company (b)) or a point on the line of best fit, or sales $£ 1000$ s / advertising $£ 1000$ s |
| (e) (i) Conclusion, e.g. 'yes selling more the more money spent', 'don't know as only 11 companies asked', 'yes, as there is positive correlation' | E1 | Allow 'a product may not be successful if not advertised' |
| (ii) Next step, e.g. 'gather more data', 'ask more companies' | E1 | Do not accept 'ask more people' as this is about shampoo companies, so this standard answer to data questions is insufficient unless accompanied by further relevant detail |
|  | 8 |  |



\begin{tabular}{|c|c|c|}
\hline Applications Unit 2 Higher Tier January 2016 \& \& Final \\
\hline \begin{tabular}{l}
4(a) \(60: 96\) considered, e.g. sight of \(96 / 60\) or 1.6 \\
\(80 \times 96 \div 60\) or equivalent \\
\(128(\) p) or \((\mathfrak{f}) 1.28\) \\
(b) \((96 \mathrm{~cm}\) laces weigh \(8 \times 1.6\) or \(8 \times 96 / 60=) 12.8(\mathrm{~g})\) \(0.4(0) \times 12.8\) \\
5.12 ( g of nylon)
\end{tabular} \& M1
m1
A1

B1
M1
A1

6 \& | OR (60cm is $80 p, 1 \mathrm{~cm}$ is) 80/60 ( $=1.3(33 \ldots p)$ |
| :--- |
| OR 96 cm costs $80+36 \times 80 \div 60$ |
| CAO |
| If units are given they must be correct |
| FT their ' $\times 1.6$ ', |
| FT their derived 12.8 g |
| CAO |
| If no marks, SCl for $(0.4 \times 8=) 3.2(\mathrm{~g})$ | <br>

\hline | 5. |
| :--- |
| Herenow Bank $\quad 20000 \times 1.022^{12}$ |
| (£) 25968.13 |
| Denford Building Society $20000 \times 1.027^{10}$ |
| (£) 26 105.645.. |
| Conclusion, e.g. 'Denford, with still 2 further years to invest somewhere', 'Denford is more (with time to make more interest too)' | \& M2

A1
M2
A1
E1

7 \& | Penalise working with Dreadly Bank -1, unless rejected |
| :--- |
| M1 for sight of $1.022^{12}$ or for $20000 \times 1.022$ |
| M1 for sight of $1.027^{10}$ or for $20000 \times 1.027$ |
| FT provided at least M2 awarded Ignore an incorrect statement provided a valid reason is given |
| Alternative: comparison of $1.022^{12}=1.298 \%$ and $1.027^{10}=1.305 \%$ is awarded B4, then E1 for conclusion "Denford, as more interest in less time' or similar | <br>

\hline | 6(a)(i) Strategy, use of suitable linear type relationship, e.g. |
| :--- |
| Mountain biking burns |
| $502 \div 130$ or $598 \div 155$ or $695 \div 180$ |
| (=3.86 calories/pound), OR |
| Review of differences or gaps |
| $180-155=25$ pounds AND $695-598=97$ calories |
| Method of estimating, e.g. |
| $170 \times 3.86$ calories/pound OR $97 \times 15 / 25+598$ |
| Accept answers in the inclusive range 653 to 663 |
| (ii) Weighs $(75 \times 2.2=) 165$ pounds |
| Suitable method to estimate, e.g. |
| weight $\times 1.8(1 .$. calories/ pound per $h) \quad(\times 41 / 2)$ |
| OR $281+10 / 25 \times(327-281) \quad(\times 41 / 2)$ |
| $\times 41 / 2$ |
| From suitable calculations, answers in the inclusive range 1336 to 1350 (calories) | \& S1

M1
M1
A1
B1
M1

m1
A1

7 \& | Quotients need to be appropriate for use, not inverted |
| :--- |
| Accept equivalent methods, e.g. setting up linear equations or unitary ratios |
| Example: $695 \times 170 / 180(=0.944 \ldots)$ is $\mathrm{S} 1, \mathrm{M} 1$ |
| Only accept answers in this range |
| FT 'their 165 pounds' Accept equivalent methods with linear equations or unitary ratios |
| Accept as complete method for 1 hour. Allow use of weight as ' 75 ' for M1 only Allow FT answers from similar premature approximation | <br>

\hline | 6(b) Set up any one suitable equation, e.g. $1 / 3 x+1 / 4 y=12 \text { OR } 1 / 2 x+3 / 4 y=30$ |
| :--- |
| Two suitable equations with consistent units of time, e.g. $1 / 3 x+1 / 4 y=12$ AND $1 / 2 x+3 / 4 y=30$, OR $20 x+30 y=720 \text { AND } 30 x+45 y=1800$ |
| Full method to solve, e.g. equate coefficients and decision to subtract |
| First variable correct |
| Method to calculate second variable |
| Second variable correct | \& S1

B1

M1

A1
m1
A1

6 \& | Allow with mixed units of time, e.g. $20 x+1 / 4 y=12$ OR $1 / 2 x+45 y=30$ |
| :--- |
| Allow $20 x+15 y=12 \text { AND } 30 x+45 y=30$ |
| FT provided at least one equation is correct (in hours or minutes consistently) and equivalent difficulty |
| Allow 1 error in a value other than the equal coefficient |
| Penalise once only as $\mathrm{km} / \mathrm{min} *$ |
| (Penalise once only as $\mathrm{km} / \mathrm{min} *$ ) |
| *Penalise once only for answers given as km/min, $\begin{aligned} & x=0.2(\mathrm{~km} / \mathrm{min}), y=0.533 \ldots(\mathrm{~km} / \mathrm{min}) \\ & \mathbf{x}=\mathbf{1 2}(\mathbf{k m} / \mathbf{h}), \mathbf{y}=\mathbf{3 2}(\mathbf{k m} / \mathbf{h}) \end{aligned}$ | <br>

\hline
\end{tabular}

| Applications Unit 2 Higher Tier January 2016 |  | Final |
| :---: | :---: | :---: |
| 7(a) Working towards unitary ratio, e.g. 1000 kg is equivalent to $4320 \div 5.4$ (=800 litres), or 1 kg is equivalent to $4320 \div 5400(=0.8$ litres) | M1 | Place value may be incorrect Allow inverted quotients, but must be used correctly for m marks |
| 3.2 is 3200 kg AND <br> $3200 \times 4320 \div 5400$ or $5120 \div 0.8$ or equivalent | m 2 | Full method that could lead to a correct answer m 1 for digits of calculations correct with place value error m 1 or m 2 also implies initial M1 |
| 3200(kg) AND 2560 (litres) | A1 |  |
| Use of $5120=2 \times 2560$ OR $5120 \times 5400 \div 4320$ <br> OR equivalent <br> 6.4 AND $6400(\mathrm{~kg})$ | M1 A1 | FT 'their 2560' |
| (b)(i) <br> Plane 5 gallons of fuel per mile |  | Alternative reverse calculations: Car (per person) 25 mpg is equivalent to |
| (1 gallon $=) 1 \div 5$ (miles per gallon) | M1 | 1 mile using (1/25=) 0.04 (gallons) M1 |
| $\times 550$ (person miles per gallon) | M1 | Plane (per person) 1 mile uses 5/550 M1 |
| Plane: total distance travelled $=110$ (person miles per gallon) | A1 | $\begin{aligned} & \quad=0.00909 . .(\text { gallons per person }) \quad \text { A1 } \\ & \text { (accept } 0.01 \text { from correct working) } \end{aligned}$ |
| Implies Carlo is correct by appropriate comparison, e.g. 'Yes, as per person, car is 25 mpg , plane is 110 mpg | A1 | OR e.g. 'Yes, as per person per mile, car is 0.04 gallons but plane is (only) $0.009090 \ldots$ gallons |
|  |  | Alternative: <br> (200 miles with 8 gallons in car) <br> 200 miles is 1000 gallons in plane M1 <br> $1000 \div 550$ M1 <br> $=1.8(1 .$. gallons per person by air) A1 <br> Implies Carlo is correct by comparison 8 to <br> 1.8(1..) gallons per person |
|  |  | Alternative: <br> (200 miles with 8 gallons in car) <br> 200 miles is 1000 gallons in plane <br> M1 <br> 550 people by car would be $8 \times 550$ $\begin{equation*} =4400 \text { (gallons) } \tag{Al} \end{equation*}$ <br> Implies Carlo is correct by comparing 550 <br> people, 1000 to 4400 gallons <br> A1 |
| (b)(ii) Suitable explanation, e.g. 'not true if the plane isn't filled', 'could be a big difference between aviation and car fuel prices', 'car travel economy improves when more than one person' | E1 | Accept reference to more expensive cost for domestic, or short haul flights. |


| Applications Unit 2 Higher Tier January 2016 |  | Final |
| :---: | :---: | :---: |
| 8(a) $\mathrm{y} \geq 5$ AND $\mathrm{y}<2 \mathrm{x}$ AND $80 \mathrm{x}+120 \mathrm{y}$ < 2400 | B4 | B3 for any 2 correct inequalities <br> B2 for any 1 correct inequality with at least one other inequality only inaccurate due to incorrect symbol ( $>, \geq,<, \leq$ ) B1 for any 1 correct inequality, or B1 for at least two inequalities only inaccurate due to incorrect symbol ( $>, \geq,<, \leq$ ) |
| (b) Line $\mathrm{y}=5$ drawn correctly | B1 | FT their inequalities if possible |
| Line $\mathrm{y}=2 \mathrm{x}$ drawn correctly | B1 |  |
| Line $80 x+120 y=2400$ drawn correctly | B1 |  |
| The correct region indicated | B1 | CAO |
| (c) 8 statues and 14 paintings $(8 \times 80+14 \times 120=640+1680)$ | B1 | FT their graph provided at least B2 in (b) Independent of their graph, may be from calculation. Allow correct response from incorrect graph |
| (£)2320 | B1 | Allow 2320 alone, without the number of paintings and statues i.e. B0, B1 <br> Allow SC1 for 9 statues with 14 paintings and £2400 cost OR <br> Allow SC1 for 7 statues with 14 paintings and £2240 cost |
|  | 10 |  |
| $9(\mathrm{a})(\mathrm{n}=) 3^{4}$ | M1 |  |
| 81 (tomatoes) | A1 |  |
| (b) 10.8 kg is $(10.8 \times 1000 \div 50=) 216$ tomatoes left | B1 |  |
| Number of kg tomatoes sold (£) $51.90 \div(\mathfrak{£}) 1.50$ ( $=34.6 \mathrm{~kg}$ ) | M1 |  |
| Number of tomatoes sold $\times 1000 \div 50$ | m1 |  |
| 692 (tomatoes) | A1 |  |
| Total number of tomatoes ( $216+692=$ ) 908 | B1 | FT their 692 provided at least M1 awarded <br> Alternative: <br> Mass of tomatoes sold $51.90 \div 1.50$ $(=34.6 \mathrm{~kg})$ <br> Total mass of tomatoes taken to market <br> Number of tomatoes taken to market $45.4 \times 1000 \div 50$ OR $45.4 \times 0.05$ $\begin{array}{cc}  & \mathrm{M1} \\ =908 & \mathrm{Al} \end{array}$ |
| $908=3{ }^{\text {d }}$ | B1 | FT their 908, provided at least 3 marks previously awarded |
| Method to solve, e.g. trial \& improvement or attempt the graph of $n=3^{\text {d }}$ | M1 |  |
| Appropriate graph plotted between $\mathrm{d}=6$ and $\mathrm{d}=7$, or trial for $\mathrm{d}=6$ and $\mathrm{d}=7$ (729 and 2187) | m1 |  |
| 6.2 (hours of continuous sunshine) | A1 11 |  |
| 10. Volume of cup $=2 \times \pi \times 4.2^{3} \div 3$ or equivalent | M1 | Do not accept with sight of ' $\mathrm{r}=8.4$ ' |
| $155\left(\mathrm{~cm}^{3}\right)$ or $49.392 \pi\left(\mathrm{~cm}^{3}\right)$ | A1 | Values rounding to 155 , e.g. 155.1.. or 155.2 .. Award this A1 as implied by correct sight of equating volumes with intention to cancel $\pi$ |
| Volume jar $155=\pi \times \mathrm{r}^{2} \times 5.2$ or $49.392 \pi=\pi \times \mathrm{r}^{2} \times 5.2$ | M1 | FT their volume equated to $\pi \times \mathrm{r}^{2} \times 5.2$ |
| $\mathrm{r}^{2}=9.498 \ldots$ or $\mathrm{r}=3.08 \ldots$ | A1 |  |
| Diameter of the jar 6.2 (cm) | A1 5 | CAO. Must be 1dp |

