шјес
cbac

GCSE MARKING SCHEME

JANUARY 2016

APPLICATIONS OF MATHEMATICS UNIT 1 - HIGHER TIER
 4361/02

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE APPLICATIONS OF MATHEMATICS UNIT 1 - HIGHER TIER

MARK SCHEME - JANUARY 2016

\begin{tabular}{|c|c|c|}
\hline Applications Unit 1 Higher Tier January 2016 \& \& Final \\
\hline \[
\text { 1. } \begin{aligned}
\mathrm{w} \& =74^{\circ} \\
x \& =68^{\circ} \\
y \& =142^{\circ} \\
z \& =74^{\circ}
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
4
\end{gathered}
\] \& FT 142 - their w FT their \(w+\) their x FT their w \\
\hline \begin{tabular}{l}
2.(a) 09:00 to \(09: 35\) or \(09: 40,09: 40\) to \(10: 15\) or 10:20, 10:20 to 10:55 or 10:20 to 11:00 OR, \\
Attempt 120 minutes \(\div 35\) minutes or \(\div 40\) minutes, OR equivalent towards finding 3 production runs (\(3 \times 4=\)) \(\quad 12\) (soup spoons) \\
(b) \(7 \times 252 \div 21\) OR \(1 / 3 \times 252\)
\[
84 \text { (knives) }
\] \\
(c) Forks 6, 12, 18, 24, AND Soup spoons 4, 8, 12, 16 WITH sight of comparison of difference in numbers for each run, OR \\
Trial \& improvement, e.g. \(20 \times 6\) compared with \(20 \times 4\) and consider the difference \\
26 (production runs)
\end{tabular} \& B1

B1

M1
A1
M1

A1

6 \& | Working may be shown in stages |
| :--- |
| OR sight of ' 12 production runs' |
| OR sight of 156 and 104 , OR sight of $52 \div 2$ (as 2 more soup spoons in each run) |

\hline | 3(a) Correct scale used with diagonals 6 cm and 10 cm Longer diagonal split 4 cm and 6 cm at intersection Shorter diagonal split 3 cm and 3 cm |
| :--- |
| Diagonal intersection $90^{\circ}\left(\pm 2^{\circ}\right)$ |
| Outline of the kite correct |
| (b) Both obtuse angles AND |
| Head and tail angles correctly measured, $\pm 2^{\circ}$ | \& | B1 |
| :---: |
| B1 |
| B1 |
| B1 |
| B1 |
| |
| |
| |
| B2 | \& | FT their consistent scale if possible |
| :--- |
| FT their kite for an equal split of the shorter diagonal, a kite must be seen |
| May not be shown, implied provided kite outline seen |
| CAO, not FT |
| Diagonals given treated as sides, award: |
| B1 if scale of sides is correct, |
| B0 |
| B1 if their kite has an equal split of the shorter diagonal, |
| BO, |
| BO |
| FT their quadrilateral |
| B1 for any 2 or 3 angles correctly measured, $\pm 2^{\circ}$ (Approximately $74^{\circ}, 53^{\circ}, 117^{\circ}, 117^{\circ}$, but measure their angles) |
| There is no requirement for their angle sum to be 360° |

\hline | 4(a) Area triangle $=1 / 2 \times 8 \times 3$ or $2 \times 1 / 2 \times 4 \times 3$ |
| :--- |
| Total area $=9 \times 8+1 / 2 \times 8 \times 3(=72+12)$ or equivalent $84\left(\mathrm{~cm}^{2}\right)$ |
| (b) Perimeter floor $=8+6+8+6$ or equivalent 28 (cm) |
| (c) Vertical side area $=9 \times 6$ OR |
| Roof piece area $=5 \times 6$ |
| $54\left(\mathrm{~cm}^{2}\right)$ |
| $30\left(\mathrm{~cm}^{2}\right)$ | \& B1

M1
A1

M1
A1

M1

A1
A1
8 \& OR an appropriate non rectangular area FT their 'area triangle' CAO

\hline
\end{tabular}

$\begin{array}{l}\text { Applications Unit 1 Higher Tier January 2016 }\end{array}$		Final
$\begin{array}{l}\text { 5(a) Perpendicular bisector }\left(\pm 2^{\circ}\right) \text { between } \\ \text { Shrewsbury and Hereford } \\ \text { Aberystwyth and Newtown } \\ \text { Helicopter base indicated }\end{array}$	B1	$\begin{array}{l}\text { Arcs must be shown } \\ \text { Arcs must be shown } \\ \text { B1 }\end{array}$
Accept sight of the intersections of the		
perpendicular bisectors		
FT provided B1 previously awarded and the		
other perpendicular bisector is within $\pm 4^{\circ}$		
tolerance		
If B0, B0 due to no arcs, allow FT for possible		
final B1 provided perpendicular bisectors used		
Accept the intersection of the two		
perpendicular bisectors as their indication.		
FT provided at least one line accurate but the		
other slightly outside the tolerance, $\pm 4^{\circ}$		

Applications of Mathematics MS January 2016
Unit 1 Higher Tier

