wjec cbac

GCSE MARKING SCHEME

JANUARY 2016

MATHEMATICS UNITISED - UNIT 3 HIGHER TIER 4353/02

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Unitised Unit 3 – Jan 2016 Final 31.1.16		
	Da	
1. (a) 1·7	B2	B1 for 1.6(810)
(b) $4a(3b + 5)$	B2	B1 for $4a(3b)$ or $4a(+5)$ or correct partial factorisation.
(c) 5/15 or 1/3 or 0·33(333)	B1	Mark final answer. Do not accept 0.3.
	5	
2. (Ratio =) 1:2 or equivalent.	B1	Allow 2:1 or equivalent
(1 part =) 45 ÷ 3	M1	FT the sum of their ratio.
William £15 Rushan £30	A1	CAO
		An answer of 30, 15 gets B1M1A0
	3	
3 Suitable arcs for 30° angle	M1	
Line drawn at 30°	Δ1	Lise overlav Allow +2°
Suitable arcs for 120° (60° from the right side of the	M1	
vertex)	1411	Lise overlav, Allow +2°
Line drawn at 120°	۸1	Denalice 1 for incomplete triangle if all marks are gained
	AI	Alternative method:
		Allemative metricula.
		Candidates may use the fact that the thangle is isosceles
		for the 2° MIA1.
	4	
4. $(1/12 \times 510) 42.5(0) \text{ OR}$ $(0.016 \times 510) 8.16$	B1	
510 – 42·5(0) OR 510 + 8·16	M1	(11/12) × 510 OR 1·016 × 510 gains B1M1.
$= (\pounds)467.5(0)$ OR $= (\pounds)518.16$	A1	
1·016 × 467·5(0) OR (11/12) × 518·16	M1	FT 'their 467·50' OR 'their 518·16'.
(Cost of season ticket =) (£)474.98	A1	
(Saving =) (£)35·02	B1	FT provided at least one M1 awarded.
QWC:		
Look for		QWC2 Presents material in a coherent and logical manner.
 correct units used i.e. f. n. 		using
 spalling in at least 1 statement/contance 		acceptable mathematical form, and with few if any errors in
 Spelling in at least 1 statement/sentence algority of text explorations 		spelling punctuation and grammar
 clarity of text explanations 		spennig, puricidation and grammar.
OWC2: Candidates will be expected to		OWC1 Presents material in a coherent and logical manner
QWC2. Candidates will be expected to	OWC	but with some errors in use of mathematical form spelling
 present work clearly, with words or quantities 		but with some errors in use of mathematical form, spelling,
shown for clarity of process or steps	2	
AND		OR evident week each in experiention of material but weing
 make few if any mistakes in mathematical form, 		evident weaknesses in organisation of material but using
spelling, punctuation and grammar in their		acceptable mathematical form, with few if any errors in
answer		spelling, punctuation and grammar.
QWC1: Candidates will be expected to		QWC0 Evident weaknesses in organisation of material, and
 present work clearly, with words or quantities 		errors in use of mathematical form, spelling, punctuation or
shown for clarity of process or steps		grammar.
OR		
 make few if any mistakes in mathematical form 		
 make rew if any mistakes in mathematical form, spelling, punctuation and grammar in their 		
answer	8	
5 (Internal angle of the regular pentagon $-$) (2 \times 100) \cdot 5	M1	Alternative method:
5. (internal angle of the regular periagon =) (5 × 100) \div 5		M1 for (exterior angle of pentagon -) 260 : 5
$= 108(^{\circ})$		At for $72/9$
(4 angle in the quadrilateral =) $360 - (90 + 111 + 57)$		AT IUL 12() M1 for (1 th angle in the supervisite state) 000 (00 1111
= 102(°)	A1	M1 for (4 angle in the quadrilateral =) $360 - (90 + 111 + 57)$
		<i>5/)</i>
		A1 tor $(78 + 72) = 150(°)$.
$(x =) (360 - 108 - 102) = 150(^{\circ})$	B1	FI provided at least one of the previous M1 marks
		awarded, and x<180.
	5	
6. $8y - 3 = 4y + 16$	B1	FT until 2 ^{na} error.
8y - 4y = 16 + 3	B1	
y = 4¾ OR 4·75 OR 19/4	B1	Mark final answer.
	3	

Unitised Unit 3 – Jan 2016 Final 31.1.16 Higher Tier Mark scheme		
7 Squaring at least 2 lengths	B1	
$8^2 + 15^2 (-64 + 225 - 289)$	M1	Accept equivalent methods
$17^2 - 280 \text{ OP} \sqrt{280} = 17$ (and conclusion)	Δ1	
17 = 209 OK (209 - 17 (and conclusion))	AI	Altornative mathedu
		B1 for squaring at least 2 lengths
		M1 for $\cos(\text{angle}) = (15^{2} + 8^{2} - 17^{2})/(2 \times 15 \times 8)$
		A1 for angle = 90°
	3	
8. (a) Sight of the mid-points 49.5, 149.5, 249.5, 349.5,	B1	
449.5.		
49·5×4 + 149·5×9 + 249·5×14 + 349·5×1 + 449·5×2	M1	FT their mid-points from within or at the bounds of the
$(=198 + 1345 \cdot 5 + 3493 + 349 \cdot 5 + 899)$ (=6285)		groups.
		9.0400
6285 ÷ 30	m1	FT 'their 6285'
- 200.5	Λ1	Accept 210 from correct working
- 209.5	AI	Accept 210 from correct working.
		An answer of 209.5 found from using mid-points of 50, 150,
		and subtracting 0.5 gains full marks.
(b) valid assumption e.g. 'every data item lies at the	E1	Accept ' how many copies were made each day
mid-point of each group.' OR 'the data is evenly		
distributed across each group.' OR ' the same number		
of copies made each day'		
(c) valid description e.g. 'She could have calculated		
accurate means using the actual data she recorded.' OR	E1	
'She could have used smaller class intervals.'		
	6	
9(3) $8-1$	B2	B1 for each value of v
(b) At least 6 points plotted accurately		ET their θ' and their -1
(b) At least 0 points plotted accurately		
Smooth curve drawn connecting all 7 correct points.		ET their graph provided there are 0 colutions
(C) $(X =)$ 0.2 AND 2.3	BI	F I their graph provided there are 2 solutions.
	5	
10. (Area of square =) 3^{-1} (= 9) (cm ⁻)	B1	
$34 \times \pi \times 3^2$	M1	
$= 21 \text{ to } 21.22(\text{cm}^2)$	A1	
(Total area =) 30 to 30.22 (cm2)	B1	FT 'their 21' + 9 provided $\pi \times 3^2$ used in their calculation.
	4	
11. 150 × tan39(°)	M2	M1 for $tan39(^{\circ}) = h/150$
		Allow M1 for incorrect placement of the angle of elevation
		loading to $h = 150 \times tap 51(^{\circ})$
		Γ reduind to $\Gamma = 150 \times 1000$
= 121(.467) (m)	A1	CAO
= 121(.467) (m) (Height of tower =) 123(.167) (m)	A1 A1	CAO ET from M1 (for adding 1.7 onto 'their $121(.467)$)'
= 121(·467) (m) (Height of tower =) 123(·167) (m)	A1 A1 4	CAO FT from M1 (for adding 1.7 onto 'their $121(.467)$ '
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m)	A1 A1 4 B2	Eaching to $H = 130 \times 14131(.)$ CAO FT from M1 (for adding 1.7 onto 'their 121(.467)'
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4	A1 A1 4 B2	Eaching to $H = 130 \times 1413 H(3)$ CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or promoture rounding written correctly in standard form
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4	A1 A1 4 B2	Eaching to $H = 130 \times 14131(.)$ CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or premature rounding written correctly in standard form
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units.	A1 A1 4 B2 B1	Eaching to $H = 130 \times 14131(.)$ CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or premature rounding written correctly in standard form
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or	A1 A1 4 B2 B1 M1	CAO FT from M1 (for adding 1.7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only.
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent.	A1 A1 4 B2 B1 M1	FT with incorrect place value provided conversion
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent.	A1 A1 4 B2 B1 M1	Eaching to $H = 150 \times tarist()$ CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted.
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14}	A1 A1 4 B2 B1 M1	Eaching to $H = 150 \times tarist()$ CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10 ¹⁴ or correct number but not in
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14}	A1 A1 B2 B1 M1 A2	Eaching to $H = 150 \times tarist()$ CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10 ¹⁴ or correct number but not in standard form.
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14}	A1 A1 B2 B1 M1 A2	Eaching to T = 150 x tails T() CAO FT from M1 (for adding 1·7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1.0(29411)×10 ¹⁴ or correct number but not in standard form. SC1 for 1.0(29411)×10 ⁸ .
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14}	A1 A1 B2 B1 M1 A2	Beauting to T = 150 x tails T() CAO FT from M1 (for adding 1·7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1.0(29411)×10 ¹⁴ or correct number but not in standard form. SC1 for 1.0(29411)×10 ⁸ . SC2 for 1.03×10 ⁸ .
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14}	A1 A1 B2 B1 M1 A2	FT from M1 (for adding 1.7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for $1.0(29411) \times 10^{14}$ or correct number but not in standard form. SC1 for $1.0(29411) \times 10^8$. SC2 for 1.03×10^8 .
= $121(.467)$ (m) (Height of tower =) $123(.167)$ (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14} 13. Method of working with all 3 terms to clear the 2	A1 A1 B2 B1 M1 A2 6 M2	FT from M1 (for adding 1.7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for $1.0(29411) \times 10^{14}$ or correct number but not in standard form. SC1 for $1.0(29411) \times 10^8$. SC2 for 1.03×10^8 . e.g. multiplying each term by a multiple of 20.
= 121(·467) (m) (Height of tower =) 123(·167) (m) 12. (a) $4 \cdot 137 \times 10^4$ (b) Correct conversion to common units. $0 \cdot 07 \div (6 \cdot 8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6 \cdot 8 \times 10^{-10})$ or equivalent. = $1 \cdot 03 \times 10^{14}$ 13. Method of working with all 3 terms to clear the 2 fractions.	A1 A1 B2 B1 M1 A2 6 M2	FT from M1 (for adding 1.7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for $1.0(29411) \times 10^{14}$ or correct number but not in standard form. SC1 for $1.0(29411) \times 10^8$. SC2 for 1.03×10^8 . e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms.
= 121(·467) (m) (Height of tower =) 123(·167) (m) 12. (a) $4 \cdot 137 \times 10^4$ (b) Correct conversion to common units. $0 \cdot 07 \div (6 \cdot 8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6 \cdot 8 \times 10^{-10})$ or equivalent. = $1 \cdot 03 \times 10^{14}$ 13. Method of working with all 3 terms to clear the 2 fractions.	A1 A1 4 B2 B1 M1 A2 6 M2	FT from M1 (for adding 1.7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for $1.0(29411) \times 10^{14}$ or correct number but not in standard form. SC1 for $1.0(29411) \times 10^8$. SC2 for 1.03×10^8 . e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1.
= 121(·467) (m) (Height of tower =) 123(·167) (m) 12. (a) $4 \cdot 137 \times 10^4$ (b) Correct conversion to common units. $0 \cdot 07 \div (6 \cdot 8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6 \cdot 8 \times 10^{-10})$ or equivalent. = $1 \cdot 03 \times 10^{14}$ 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms	A1 A1 4 B2 B1 M1 A2 6 M2	FT from M1 (for adding 1.7 onto 'their $121(.467)$ ' B1 for 41370 or 41.37×10^3 or 413.7×10^2 or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6.8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for $1.0(29411) \times 10^{14}$ or correct number but not in standard form. SC1 for $1.0(29411) \times 10^8$. SC2 for 1.03×10^8 . e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1.
= 121(·467) (m) (Height of tower =) 123(·167) (m) 12. (a) $4 \cdot 137 \times 10^4$ (b) Correct conversion to common units. $0 \cdot 07 \div (6 \cdot 8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6 \cdot 8 \times 10^{-10})$ or equivalent. = $1 \cdot 03 \times 10^{14}$ 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e.	A1 A1 4 B2 B1 M1 A2 6 M2	 CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10³ or 413·7×10² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10⁸. SC2 for 1·03×10⁸. e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1.
= 121(.467) (m) (Height of tower =) 123(.167) (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14} 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e. (10x + 15 - 14x - 16 leading to) 15 - 4x - 16 or	A1 A1 4 B2 B1 M1 A2 6 M2	 CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10³ or 413·7×10² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10⁸. SC2 for 1·03×10⁸. e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1.
= 121(.467) (m) (Height of tower =) 123(.167) (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14} 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e. (10x + 15 - 14x = 16 leading to) $15 - 4x = 16$ or equivalent	A1 A1 B2 B1 M1 A2 6 M2 A1	 CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10³ or 413·7×10² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10⁸. SC2 for 1·03×10⁸. e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1. FT provided at least M1 awarded. FT until 2nd error.
= 121(.467) (m) (Height of tower =) 123(.167) (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14} 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e. (10x + 15 - 14x = 16 leading to) $15 - 4x = 16$ or equivalent. x = 1/4 or -0.25	A1 A1 4 B2 B1 M1 A2 6 M2 A1	 CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10³ or 413·7×10² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10⁸. SC2 for 1·03×10⁸. e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1. FT provided at least M1 awarded. FT until 2nd error.
= 121(.467) (m) (Height of tower =) 123(.167) (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14} 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e. (10x + 15 - 14x = 16 leading to) $15 - 4x = 16$ or equivalent. x = -1/4 or -0.25	A1 A1 B2 B1 M1 A2 6 M2 A1 A1	 CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10³ or 413·7×10² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10⁸. SC2 for 1·03×10⁸. e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1. FT provided at least M1 awarded. FT until 2nd error. Mark their final answer.
= 121(.467) (m) (Height of tower =) 123(.167) (m) 12. (a) 4.137×10^4 (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^4) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10^{14} 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e. (10x + 15 - 14x = 16 leading to) $15 - 4x = 16$ or equivalent. x = -1/4 or -0.25	A1 A1 4 B2 B1 M1 A2 6 M2 A1 A1	Preducting to The 150 x tails T(1) CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10 ³ or 413·7×10 ² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10 ¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10 ⁸ . SC2 for 1·03×10 ⁸ . e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1. FT provided at least M1 awarded. FT until 2 nd error. Mark their final answer. If no marks awarded SC1 for sight of (15–4x)/20 or
= 121(.467) (m) (Height of tower =) 123(.167) (m) 12. (a) 4.137 × 10 ⁴ (b) Correct conversion to common units. $0.07 \div (6.8 \times 10^{-16})$ OR $(7 \times 10^{4}) \div (6.8 \times 10^{-10})$ or equivalent. = 1.03×10 ¹⁴ 13. Method of working with all 3 terms to clear the 2 fractions. Correctly expanding brackets and collecting like terms i.e. (10x + 15 - 14x = 16 leading to) 15 – 4x = 16 or equivalent. x = -1/4 or -0.25	A1 A1 4 B2 B1 M1 A2 6 M2 A1 A1 A1	 CAO FT from M1 (for adding 1·7 onto 'their 121(·467)' B1 for 41370 or 41·37×10³ or 413·7×10² or 4137×10 or premature rounding written correctly in standard form Accept use of 7 instead of 6·8 for B1M1 only. FT with incorrect place value provided conversion attempted. A1 for 1·0(29411)×10¹⁴ or correct number but not in standard form. SC1 for 1·0(29411)×10⁸. SC2 for 1·03×10⁸. e.g. multiplying each term by a multiple of 20. M1 for appropriate working for 2 of the 3 terms. Clearing implies denominator of 1. FT provided at least M1 awarded. FT until 2nd error. Mark their final answer. <i>If no marks awarded SC1 for sight of (15–4x)/20 or equivalent.</i>

Unitised Unit 3 – Jan 2016 Final 31.1.16 Higher Tier Mark scheme		
14. (a) valid reason	_	
e.g 'Melfach's median is higher than Brynwyn's', with	E1	Accept sight of medians for both villages (£175,000-
correct values given or implied or an indication on the		£180,000 and £335,000-£340,000)
seenth		
graph.		
OR 'Melfach's graph is to the right of Brynwyn's'		
(b) $14(%)$	B1	
$(\mathbf{D}) 1 + (\mathbf{D}) 1 + $		
(c) Valid reason e.g. The cumulative frequencies are	E1	If percentages quoted they need to be correct.
percentages' OR 'We don't know how many houses		
there were altogether in each village' OR '60% of the		
bourses in Brypung may be loss than $1/9$ of the bourses		
nouses in Drynwyn may be less man 1476 or me nouses		
In Melfach' OR 'It doesn't show the number of houses'		
	3	
15 (a) $(x + 10)(x - 2)$	B2	B1 for $(x = 10)(x = 2)$
(x + 10)(x - 2)		Otriet ET their breakets are vided are views D4 evended
x = -10 AND $x = 2$	DI	Strict FT their brackets provided previous BT awarded.
(b) $0 = 70 + 4t - 5t^{2}$	B1	May be implied in their working.
$-4 + \sqrt{4^2 - 4 \times -5 \times 70}$ $4 + \sqrt{(-4)^2 - 4 \times 5 \times -70}$		
$(t=) - \frac{1+\sqrt{1-1}}{\sqrt{1-1}} \text{ or } \frac{1+\sqrt{1-1}}{\sqrt{1-1}} \sqrt{1-1}$	M1	Allow 1 clip in substitution
2×-5 2×5	1011	
$-4 \pm \sqrt{1416}$ $4 \pm \sqrt{1416}$		
$(t=) - \frac{t-1}{10} $ or $\frac{t-1}{10} $	A1	CAO
-10 10		
4.16 (seconds)	A2	CAO. A1 for $(t=)$ -3.36 and 4.16 (seconds) OR
		A1 for 4.1(6297) OR 4.2 with or without the negative
		value
	8	
(-10, (-1), (-100, -10	0	
16. (a) $(BC =) 7.4 + 5.9 - 2 \times 7.4 \times 5.9 \times cos_{26}(^{\circ})$	IVIT	
$BC^2 = 11.0(873)$ or $(BC =) \sqrt{11.0(873)}$	A1	
(BC =) 3·3(297) (cm)	A1	
sin 96	MO	$\operatorname{sin} angle = \sin 96$
(b) (angle =) $\sin^{-1}(\frac{\cos^{-1}}{\cos^{-1}} \times 12)$	IVIZ	101 101 - 12 - 23
	۸1	11 15
Angle = $31(\cdot 25/2)(\circ)$	A	
(Area =) 1/2×12×23×sin52·7(427)	IM1	F I provided the sine or cosine rule attempted for previous
		M1.
		Alternative method
	۸1	$M1 \text{ for } \frac{1}{2} \times 18.4 (0712) \times 23 \times \sin 31.2 (572)$
(Area =) 109·8(377) (cm ⁻)	AI	
		Allow answers in the range 109-77 to 110-21 that come from
	8	premature rounding of the angle.
17. Frequency densities of 1.8. 2.6. 0.5. 0.2	M2	M1 for any 2 or 3 correct.
Histogram of their frequency densities drawn	A 1	Brovided at least M1 owerded
r instograffi of their frequency defisities drawn.	AI	
	3	
18. Split into 5 areas and attempt to sum.	M1	
(Distance =) $\frac{1}{2} \times 20(0 + 2 \times 19 + 2 \times 21 + 2 \times 16 + 2 \times 18 + 0)$	M1	Or equivalent (Areas of 190, 400, 370, 340, 180)
(Biotalloo = j) ZZEO(0 + EATO + EATO + EATO + O)		Award for up to 1 arror in reading cools
		Award for up to T error in reading scale.
= 1480 (m)	A1	CAO.
	3	
h 30		
19. (a) $\frac{1}{1}$ = $\frac{1}{20}$ or equivalent.	IM1	Award M1m1 for $40 \equiv \frac{1}{3}$ h.
n = 40 20	m1	
20n = 30(n - 40) or equivalent.		
Height of large cone = 120 (cm)	A1	
(b) (Volume =) $\frac{1}{3} \times \pi \times (120 \times 15^2 - 80 \times 10^2)$	M1	FT 'their 120'.
$= 10006 \text{ to } 10006 \text{ (m}^3)$	Δ1	
= 19000 (0 19905 (CIII)		
	5	

GCSE Mathematics Unitised - Unit 3 Higher Tier MS January 2016