шјес
cbac

GCSE MARKING SCHEME

SUMMER 2016

GCSE MATHEMATICS LINKED PAIR APPLICATIONS UNIT 1 HIGHER 4361-02

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

APPLICATIONS OF MATHEMATICS UNIT 1 (HIGHER TIER) SUMMER 2016

Applications of Mathematics Unit 1 Higher Tier	Mark	Comments
1. $035^{\circ} \pm 2^{\circ}$ from Glenod $125^{\circ} \pm 2^{\circ}$ from Trefwen Correct position of the visitor centre $250\left({ }^{\circ}\right) \pm 2^{\circ}$ from Hafon	B1 B1 B1 B1 4	Use 'their N ' provided only $\pm 2^{\circ}$ from the given N Accept intersection shown FT provided at least B1 previously awarded Use 'their N ' provided only $\pm 2^{\circ}$ from the given N Strict FT from their position of the visitor centre
2(a) $60^{\circ}, 120^{\circ}, 60^{\circ}$ and 120° in any order (b) (Isosceles) trapezium (c) 1	B4 B1 B1 6	Any angles indicated should be appropriate B3 for 60° and 120° included in their answer B2 for the angle in the equilateral triangle as 60° and realising that the angle formed in connecting is 180°, e.g. sight of $180^{\circ}-60^{\circ}$ B 1 for indication of the angle in the equilateral triangle as 60° or realising that the angle formed in connecting is 180°, e.g. sight of 180° - 'their 60°, provided their 60 is from $180^{\circ} \div 3$ Ignore spelling if intention clear CAO
3. In any order, any 3 factors: - Not from exactly same height, not from the same window - Timing may be inaccurate / different stopwatches - Ground may not be level, may not land in the same place - Someone may throw the coin up first, someone could throw with force - Gust of wind might take one of the coins - (Allow) not the same coin used	B3	B1 for each correct factor Accept any other valid factor Allow - height of window from the ground - 'weight' of coin different 'Coins are different sizes' and 'coins have different masses' is counted as 1 factor

Applications of Mathematics Unit 1 Higher Tier	Mark	Comments
4(a) Explanation that mentions no common factor (other than 1), or $13 \& 17$ as prime numbers, or that it is not possible to divide (to simplify) $13 \& 17$ by any number except 1 (to result in whole number values)	E1	Allow 'neither of these numbers are divisible by the same number', or ' $13 \& 17$ can't be divided by a smaller whole number' Do not accept 'both numbers are odd and can not be simplified further', ' $13 \& 17$ don't go into the same number', '13 does not go into 17 '
(b) (Money from sales of raffle ticket - costs) 480×50 p - £ $12-£ 14-£ 32$ or equivalent (£182)	M1	Intention to calculate 'total raised - costs' (= $240-58$)
$\div 30 \times 17$	M1	FT 'their derived 182'
(£)103	A2	CAO. A1 for 102 or 103.(...) Allow A1 only as a FT, provided 'their error' is not with place value, depends on previous M1 Treat $\div 30 \times 13$ as a misread (leading to $78.866 \ldots$ or 79)
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
(c) $3 / 478$	B2	Ignore incorrect cancelling B1 for an answers .../478 or $3 / 480$ or $3 / 477$ Allow B1 for ' 3 in 478 ' or ' 3 out of 478 '
	9	

\begin{tabular}{|c|c|c|}
\hline Applications of Mathematics Unit 1 Higher Tier \& Mark \& Comments \\
\hline 5(a) Use of \(£ 5\) per 1000 cards
\[
£ 0.5(0) \text { or } 50 \text { p (per } 100 \text { cards) }
\] \& M1
A1 \& \begin{tabular}{l}
For example \(1000 \div 5\) (= 200 cards for \(£ 1\)), or sight of 200 (cards) with \(£ 1\), or \(5 \div 1000\) (\(=£ 0.005\) per card) \\
If units are given they must be correct, allow £0.50p \\
SC1 for misread as GoPrint with answer \(£ 1\)
\end{tabular} \\
\hline (b) Use of \(£ 10\) per 1000 cards for 1300 cards £13 (for 1800 cards) \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& Or sight of \(1800 \div 100-5\), or equivalent If no marks, award SC1 for an answer of \(£ 18\) \\
\hline (c) GoPrint: Any 2 points correctly plotted (Dotted) straight line correctly drawn from \((500,0)\) to beyond 4000 cards \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \\
\hline MyPrint: Any 2 points correctly plotted (Dotted) straight line correctly drawn starting from \((1000,20)\) to beyond 4400 cards \& \[
\begin{gathered}
\text { M1 } \\
\text { A2 }
\end{gathered}
\] \& A1 for correct (dotted) straight line but drawn for values less than \((1000,20)\) to beyond 4400 cards, OR for line correctly drawn starting from (1000, 20) to 4400 cards (not beyond) \\
\hline (d) Intention to interpret the intersection of the two graphs OR correct interpretation from the table \& M1 \& FT their graphs provided at least one of the lines is straight \\
\hline Correct reading for the number of cards or 4000 cards \& A1 \& Answer of the cost implies M1 only, however accept an answer including the cost e.g. ‘ 4000 cards is \(£ 35\), \\
\hline \& 11 \& \\
\hline \[
\text { 5(e)(i) } 20+5(56500-1000) / 1000(\text { (£)297.5(0) }
\] \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \\
\hline (ii) Reason, e.g. 'formula only for number of cards greater than 1000 ', ' \(\mathrm{n}-1000\) is negative', 'don't know charges for less than 1000 cards', 'don't take orders for less than 1000 cards', 'because \(800-1000\) is negative', or 'as \(800-1000=-200\) ' \& E1 \& Ignore any additional incorrect statement included Do not accept 'they can use it, the cost would be £19’ \\
\hline (f) Variable for charge and number of cards defined, e.g. 'C is charge (in \(£\)) \& \(n\) is (number of) cards' stated \& B1 \& FT their graph if equivalent level of difficulty Allow ' C is the charge and n is the number' \\
\hline \(\mathbf{C}=0.01(\mathrm{n}-500)\) or equivalent \& B2

6 \& B1 for equivalent of $0.01 \times \ldots$ or for $\ldots \times(n-500)$, or $\mathrm{n}-500 \div 100$ (missing brackets)

\hline 6(a) Angle at knee $105^{\circ} \pm 2^{\circ}$ \& B1 \&

\hline Knee to ankle line $8 \mathrm{~cm} \pm 2 \mathrm{~mm}$ \& B1 \&

\hline (b) Hip to ankle measured on the diagram \& M1 \& FT for their diagram measurement $\pm 2 \mathrm{~mm}$

\hline Measurement ($13.5 \pm 2 \mathrm{~mm} \times 5=$) $67.5(\mathrm{~cm} \pm 1 \mathrm{~cm}$) \& A1 \& FT $5 \times$ 'their appropriate measurement' accurately calculated $\pm 2 \mathrm{~mm}$

\hline 7 (a) (Total surface area of the pond is) $3.8 \times 5 \div 2$
$9.5\left(\mathrm{~m}^{2}\right)$ \& M2
A1 \& M1 for calculation of surface area of clear water $3.8 \times 3 \div 2\left(=5.7 \mathrm{~m}^{2}\right)$ or sight of $5.7\left(\mathrm{~m}^{2}\right)$ Allow an answer of $9.50\left(\mathrm{~m}^{2}\right)$

\hline $$
\begin{array}{lrl}
\text { (Pond surface area) } 9.5=\pi r^{2} \\
\text { (Radius) } & \mathrm{r}=\sqrt{ }(9.5 / \pi) \\
& =1.738 \ldots(\mathrm{~m})
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | FT 'their derived surface area of the pond' $=\pi r^{2}$ Isolation of r |
| :--- |
| Depends on M1, m1. |
| Accept rounded or truncated |

\hline (Diameter of the pond is) 3.5 (m) \& B1

7 \& Must be correct to 2 significant figures. FT 'their r ' $\times 2$ evaluated provided 'their r ' has been given (and used) to at least 2d.p. and rounded to 2 sig figs provided M1, m1 previously awarded

\hline
\end{tabular}

Applications of Mathematics Unit 1 Higher Tier	Mark	Comments
7(b)(i) Reason 'No, data is destroyed' or 'Yes, not many very small or very large diameters of water lilies' (ii) Any 3 correct frequency densities $0.25,2,5,8,7,2,0.5$ Axes correct and labelled, no gaps between bars Correct histogram	M1 A1 B1 B1	Needs to give a decision with logic/reasoning explained 'Histogram' needs to be attempted. Do not accept labels as blocks or groups, e.g. $0-4$, etc. FT if correctly drawn without axes labelled for 'their non linear' groups shown FT candidates frequency density if table completed incorrectly but the idea of frequency density must be used
8(a) 'week 3 to week 5' and 'week 4 to week 6' 92, 102, 84, 75 (b)Plots correct for their data at the mid interval with a line of best fit drawn (c) Explanation, e.g. ' Week 5 has impacted on the trend line', 'there was just the one poor week', 'only a 6 week period considered, this is only a short period'	B1 B3 B2 E1 7	OR B2 for any two correct entries, OR B1 for a correct method seen, or one correct entry B1 for correct plots at mid interval (ignore if joined dot to dot), or consistent translated plots with a line of best fit drawn Accept 'by week 6 sales increase again' Allow 'sales increase again in week 6' Do not accept 'line increases again in week 6', 'business may increase over the summer period'
9(a)Points ((0,0)), (5, 1), (10, 15), (18, 30), (24, 45), $(30,55),(40,60)$ plotted Points joined with a curve or straight line (b) Reason, e.g. 'do not know all the results for each of the intervals' (c) Correct box-and-whisker diagram	B6 B1 E1 B3 11	B1 for each correct point plotted Ignore additional points for intervals Only FT if at least B3 previously awarded and all plots are cumulative Ignore additional incorrect details Candidates may use original information Only FT their appropriate cumulative frequency graph (if possible) (not from bars) FT must be the best of consistency for either original or 'their graph' Ends of whiskers must be shown B2 for attempt box-and-whisker with - both ends correct and any 2 of LQ, median, UQ correct, or - one end correct and LQ, median \& UQ all correct B1 for attempt box-and-whisker with - both ends correct with any 1 one of LQ, median, UQ correct, or - one end correct with any 2 of LQ, median, UQ correct, or - LQ, median, UQ all correct

Applications of Mathematics Unit 1 Higher Tier	Mark	Comments
10. $5 \times 2+14 \times 8+23 \times 4+32 \times \ldots+39 \times \ldots=30 \times 27$ or equivalent	S1	Allow with incorrect midpoints provided each one is within the correct interval Maybe written as $\div 30$ with ' $=27$ ', or sight of $(27 \times 30=) 810$ with $(810-214=596$
Missing frequencies sum is 16 , e.g. sight of 16 (more days)	S1	
Trial of any two values, e.g. $(10+112+92+32 \times ?+39 \times ? ?) \div 30$, with '?' the same value or different, not necessarily with sum 16	M1	e.g. $214+32 \times ?+39 \times ? ?=810$ where $?$ and ?? are any values FT for their mid points for M1 only
4 and 12 respectively	A1	CAO
		Do not accept in reverse order
		Do not accept from obvious incorrect working
		$\left.\begin{array}{c} (10+112+92+32 \times 4+39 \times 12=30 \times 27) \\ (128 \\ 468 \end{array}\right)$
		Alternative (although not in specification) $\begin{array}{lr} 32 x+39 y=596 \text { and } x+y=16 & \text { Sl, M1 } \\ (32 x+39 y=596 \text { alone S1, M0) } & \\ \text { Method to solve } & \mathrm{ml} \\ 4 \text { and } 12 & \mathrm{Al} \end{array}$
	4	
$\begin{aligned} & \text { 11(a) } 3 \times 10^{4} \times 5 \div 600 \text { or equivalent } \\ & 2.5 \times 10^{2} \text { (grains of rice) } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	An answer of 250 implies M1
(b) $1000 \div\left(2 \times 10^{-5}\right)$ or equivalent 5×10^{7} (grains of sugar)	$\begin{gathered} \text { M1 } \\ \text { A2 } \\ 5 \end{gathered}$	A1 for 50000000 or 50 million
12. $\mathrm{y}=8 / 1 / 2^{2}$	M1	
$y=32$ hence looking for $\mathrm{y}=16$	m1	FT for their value of y then halved
$16=8 / x^{2}$ or $x^{2}=8 / 16$	m1	FT using their halved value of y used
$\mathrm{x}=0.707 \ldots$ or equivalent	$\begin{gathered} \mathrm{A} 1 \\ 4 \end{gathered}$	Allow ± 0.707 or 0.7 from correct working

Applications of Mathematics Unit 1 Higher Tier	Mark	Comments								
13(a) Correct evaluation of at least 3 coordinates	B1	t	0	1	2	3	4	5	6	7
Suitable axes with appropriate scale and labels	B1	v	0	6	10	12	12	10	6	0
Plotting at least 6 correct points	M2	FT for their axes if reasonable. M1 for plotting between 3 and 5 correct points								
Joining all 8 points with a curve	A1									
(b)(i) (At t =) 3.5	B1	FT from 'their graph'. If FT from straight lines used then ' 3 to 4 seconds' is the required answer as a range								
(ii) Strategy, e.g. Draw a tangent at $t=5.2$	S1									
Use of difference $v /$ difference t	M1	Must be differences, not readings from axes Must be from a tangent, negative and reasonable from their graph Independent mark								
	A1									
$\mathrm{m} / \mathrm{s}^{2}$	U1									
(c) Identifying the required area	S1	Maybe shown on their graph Working with additional area is S0, however FT for possible M marks, but A0								
Splitting area into areas that can be approximated Complete calculation for the area required	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{gathered} \text { e.g } 1 / 2(6+10)+1 / 2(10+12)+1 \times 12+1 / 2(10+12) \\ =8+11+12+11 \text {, or } \\ 1 / 2(6+10+2 \times(10+12+12)) \end{gathered}$								
Accurately calculated (42m)	A1 14	Their answer may differ slightly from 42 m , this is only a guide								

