Surname
Other Names

Centre Number	Candidate Number
0	

GCSE LINKED PAIR PILOT

4364/02

METHODS IN MATHEMATICS
 UNIT 2: Methods (Calculator) HIGHER TIER

A.M. TUESDAY, 14 June 2016

2 hours

ADDITIONAL MATERIALS

A calculator will be required for this paper.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	3	
2.	3	
3.	11	
4.	10	
5.	2	
6.	5	
7.	7	
8.	10	
9.	6	
10.	6	
11.	3	
12.	3	
13.	5	
14.	6	
15.	5	
16.	6	
17.	9	
Total	100	

Formula List

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

1. Part of a shape is shown on the grid.

The dotted line is the line of symmetry of the shape.
Complete the drawing of the shape and then rotate your complete shape through 180° about the origin.

| Examiner
2. The diagram shows a 6-sided shape.

(a) Write down the length of $F E$ in terms of x.
..
\qquad
(b) The perimeter of the 6-sided shape is 480 cm . Find the value of x.
3. (a) What percentage is 45 of 9000 ?
\qquad
\qquad
(b) Increase 4000 by $1 \frac{1}{2} \%$.
\qquad
\qquad
\qquad
\qquad
(c) Evaluate the following three lengths, giving your answers correct to two significant figures. Arrange your answers in ascending order. You must show all your working.
0.28 of 1350 metres
$\frac{5}{8}$ of 580 metres
$8 \cdot 4 \%$ of 4450 metres

Answers:
Least Greatest
(d) Calculate the difference between $\frac{1}{3}$ of 30 and $\frac{3}{10}$ of 30 .
\qquad
\qquad
\qquad
4. (a) Solve $\frac{3 x}{8}=12$.
\qquad
\qquad
(b) Solve $\frac{72}{x}=9$.
\qquad
\qquad
(c) Solve $5(7 x-13)=40$.
\qquad
\qquad
\qquad
(d) Solve the inequality $6 x+4<100$.
\qquad
\qquad
(e) Write down the greatest whole number that satisfies the inequality $3 x<81$.
\qquad
\qquad
\qquad
5. The circumference of a circle is $24 \pi \mathrm{~cm}$. Calculate the radius of the circle.
\qquad
\qquad
\qquad
\qquad

Diagram not drawn to scale

Calculate x and y.
You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$x=$
cm
$y=$
cm
7. (a) Rotate the triangle through 90° clockwise using the point $(2,0)$ as the centre of the rotation.

(b) Reflect the triangle shown in the line $y=x$.

(c) Enlarge the triangle shown by a scale factor of $\frac{1}{2}$ using the origin as the centre of the enlargement.

8. You will be assessed on the quality of your written communication in this question.

A square-based cuboid has a height of 15 cm .
It has a volume of $576.6 \mathrm{~cm}^{3}$.
Each of the lengths of the sides of the base of this cuboid is increased by $\frac{1}{5}$.
Calculate the percentage increase in the volume of the cuboid.
You must show all your working.

\qquad

Calculate the length x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b)

Diagram not drawn to scale

Calculate the size of angle y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10. An antique clock is valued every 10 years.

The clock was valued at $£ 800$ in 1960.
The owner of the clock keeps a record in a table.
An incomplete section of his table is shown below.
Complete the table in the following order:

- For 1980, calculate the difference and percentage difference.
- Calculate the value of the clock in 2000.
- Complete all the remaining boxes in the table.

Year	Value	Difference in value since previous valuation	Percentage difference in value since previous valuation (correct to 1 decimal place)
1970	$£ 750$	$-£ 50$	$-6 \cdot 3 \%$
1980	$£ 782$	$£ \ldots \ldots$	$\ldots . . \%$
1990	$£ 800$	$+£ 18$	$+2 \cdot 3 \%$
2000	$£ \ldots .$.	$£ \ldots .$.	$\ldots . . \%$
2010	$£ 981$	$£ \ldots .$.	$+9 \cdot 0 \%$

11. Evaluate the following.

Give your answer in standard form correct to 3 significant figures.

$$
\frac{3.2 \times 10^{4}+7.3 \times 10^{5}}{6.2 \times 10^{3}}
$$

12.

Diagram not drawn to scale
Calculate the length x.
You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13. The diagram shows two mathematically similar moneyboxes.

Diagram not drawn to scale
(a) The height of the smaller moneybox is 3 cm . Calculate the height of the larger moneybox.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Height of the larger moneybox is \qquad cm
(b) The volume of the larger moneybox is $102 \cdot 4 \mathrm{~cm}^{3}$. Calculate the volume of the smaller moneybox.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. Solve the following simultaneous equations using an algebraic method.

$$
\begin{array}{r}
2 x^{2}+x y+6=0 \\
x+y=7
\end{array}
$$

15. Given that y is inversely proportional to x^{2}, and that $y=10$ when $x=6$, find the values of x when
$y=4$.
16. The diagram shows two sectors of circles, $B O C$ and $A O D$. The circles have a common centre, O .
You are given that $A \widehat{O D}=131^{\circ}, O B=O C=8 \cdot 4 \mathrm{~cm}$ and $B A: A O$ is $1: 2$.

Diagram not drawn to scale

Calculate the perimeter of the shaded region $A B C D$.
\qquad
17.

Calculate the area of $E F G H$.
\qquad
\qquad
\qquad
\qquad

