Surname

Centre Number Candidate Number

Mark

0

Other Names

wjec

GCSE LINKED PAIR PILOT

S16-4363-02

METHODS IN MATHEMATICS **UNIT 1: Methods (Non-Calculator) HIGHER TIER**

A.M. THURSDAY, 26 May 2016

2 hours

CALCULATORS ARE
NOT TO BE USED
FOR THIS PAPER

Question	Mark	Awarded
1.	4	
2.	8	
3.	6	
4.	2	
5.	6	
6.	7	
7.	9	
8.	5	
9.	6	
10.	10	
11.	3	
12.	3	
13.	2	
14.	2	
15.	4	
16.	7	
17.	5	
18.	5	
19.	6	
Total	100	
		C 1*/C16 4262 02)

For Examiner's use only Maximum

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

Take π as 3.14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 7(b).

Formula List

Area of trapezium =
$$\frac{1}{2}(a+b)h$$

Volume of prism = area of cross-section × length

Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$

Volume of cone $=\frac{1}{3}\pi r^2 h$ Curved surface area of cone $=\pi r l$

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

In any triangle ABC

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ Area of triangle $= \frac{1}{2}ab \sin C$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$ are given by

Turn over.

Fraction	Decimal	Recurring or terminating?	
$\frac{1}{3}$	0.3		
<u>5</u> 8			
<u>3</u> 11			
) Express $rac{0\cdot3 imes0\cdot9}{5\cdot4}$ as	a fraction in its simplest form		
 Express ^{0.3×0.9}/_{5.4} as A number is multiplied This leads to an answer 	a fraction in its simplest form by 12 and then 56 is added for	before finally dividing by 100.]
) Express ^{0·3×0·9}/_{5·4} as) A number is multiplied This leads to an answe What is the original nu 	a fraction in its simplest form by 12 and then 56 is added ther of 2. mber?	before finally dividing by 100.]

2.

Examiner only

	5		
(a)	Given that $d = -2$, $e = 3$ and $f = 5$, find the value of each of the following.	Ex	aminer only
	(i) d^3	[1]	
	(ii) $e^2 + df$	[1]	
	(iii) $\frac{1}{f}(e-d)$	[1]	
(b)			
(D)	Simplify each of the following. (i) $6g - 22h - 14g - 7h$	[2]	
	(1) 0g = 22n - 14g - m		4363
	(ii) $\frac{(x+8)^5}{(x+8)^4}$	[1]	

3.

4.	Use t	he clues to write down the names of each of the following quadrilaterals.	Examiner only
	(a)	This quadrilateral has:	
		4 equal sides,diagonals of different lengths.	[1]
		This quadrilateral is a	
	(b)	This quadrilateral has:	
		 diagonals that intersect at right angles, only one pair of opposite angles which are equal, 2 pairs of adjacent sides equal in length, no reflex angles. 	[1]
		This quadrilateral is a	

|Examiner only Express 600 as a product of prime factors using index form. 5. (a) (i) [3] ------..... ------(ii) What is the least number 600 should be multiplied by to give an answer that is a square number? [1] Calculate the larger amount when £440 is divided in the ratio 5:6. [2] (b) _____

7

Turn over.

Examiner only 6. (a) A Venn diagram is shown below. Explain why the circle to represent multiples of 10 is drawn inside the circle to represent multiples of 5. [1] ε Multiples of 3 Multiples of 10 Multiples of 5 (b) Place each of the six numbers 30, 32, 33, 35, 40, 45 in the correct position in the (i) Venn diagram. [3] (ii) A number is selected at random from the set {30, 32, 33, 35, 40, 45}. Find the probability that the number selected is a prime number, a multiple of 10 that is also a multiple of 3, neither a multiple of 3 nor 10. [3]

(a)	Each exterior angle of a regular polygon is 18°. How many sides does this regular polygon have? [2]	Examiner only
	SIGES	
(b)	You will be assessed on the quality of written communication in this part of the question.	
	Three of the interior angles of a pentagon are 125°, 130° and 135°. The other two angles are equal. Find the size of the other two angles. [7]	
		33
		430
••••••		

(4363-02)

10.	(a)	Evaluate $\frac{8 \times \sqrt{5} \times \sqrt{3} \times \sqrt{3}}{2 \times \sqrt{5}}$.	[2]	Examiner only
	(b)	Evaluate $\frac{25^{\frac{1}{2}} \times 18}{\sqrt{2}}$.	[3]	
		V9-		
	(C)	Write 0.00006 in standard form.	[1]	
	(d)	Evaluate $\frac{3.6 \times 10^8}{1.2 \times 10^{-4}}$, giving your answer in standard form.	[2]	
	······			
	(e)	Simplify $\frac{5\pi}{2} + \frac{7\pi}{4}$.		
			[2]	
		© WJEC CBAC Ltd. (4363-02)		

1	2
1	J

11. Use the table below to find an expression for the number of small squares in pattern number n.

Examiner only

number n.		[;
Pattern number	Shape	Number of small squares
1		6
2		14
3		26
4		
п		

(4363-02)

15.						only
	1	2	3	5	7	

....

16

Five cards are numbered 1, 2, 3, 5 and 7 respectively. The cards are shuffled and **two** cards are chosen at random.

(a) Write down the probability that at least one of the chosen cards shows an odd number.

[1] Calculate the probability that the difference between the numbers on the chosen cards (b) is odd. You must show your working. [3]

(a) Show that	the following identity is true.	[4]
	$(x+2)(2x-5) + (1-x)(3+2x) + 1 \equiv -2(x+3)$	
<i>b)</i> Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
<i>b)</i> Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
<i>b)</i> Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
<i>b</i>) Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
<i>b)</i> Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
<i>b</i>) Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
<i>b)</i> Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \ .$	[3]
b) Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \cdot $	[3]
b) Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9}$.	[3]
b) Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9} \cdot $	[3]
b) Simplify ²	$\frac{x^2 + 7x + 12}{x^2 - 9}$	[3]

17. The diagram shows two circles of equal radii with centres *A* and *B* joined with a straight line. The line *TSP* is a tangent to both circles. *S* lies on the circumference of both circles.

Т

E and *F* lie on the circumference of one of the circles. *G* and *H* lie on the circumference of the other circle.

(a)

(b)

E Н S В Ρ Diagram not drawn to scale You are given that $\widehat{SEF} = 2x^\circ$ and $\widehat{GSP} = x^\circ$. State the size of each of the following angles in terms of *x*. GŜF. (i) [1] ASG. (ii) [1] SAG. (iii) [1] J is the mid-point on the minor arc of the circle between S and F. State the size of SJF in terms of x. Give the reason for your answer. [2] © WJEC CBAC Ltd. (4363-02)

Examiner only

	0	as a single fract	ion in its simplest	terms.	[3]
		2x-3	$\underline{x+5}$		
		3	4		
					••••••
					••••••
					••••••
b) Expre	$ess x^2 + 18x + 10$	00 in the form (x	$(+a)^2 + b$ where a	a and b are values b	to be found.
					[2]

19. A straight line, *W*, is shown on the axes below.

20

Examiner

(b)	 The straight line, Z, is perpendicular to the straight line W, and passes through the mid-point of (6, 5) and (-2, -5). 	Examiner only
	Write your answer in the form $y = mx + c$. [4]	

END OF PAPER

BLANK PAGE

BLANK PAGE