GCSE MARKING SCHEME

METHODS IN MATHEMATICS
 (LINKED PAIR PILOT)

JANUARY 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2015 examination in GCSE METHODS IN MATHEMATICS (LINKED PAIR PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Unit 1 Foundation Tier 1
Unit 1 Higher Tier 5
Unit 2 Foundation Tier 10
Unit 2 Higher Tier 14

METHODS UNIT 1
 FOUNDATION TIER

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 Foundation Tier January 2015 \& Mark \& Comment \\
\hline \begin{tabular}{l}
9. \\
For any angle in the rectangle \(=90\left({ }^{\circ}\right)\) (180-30)/2 \\
\((\angle \mathrm{ABC})\) or \((\angle \mathrm{ACB})=75\left({ }^{\circ}\right)\) \\
\((<\mathrm{ABE})=165\left(^{\circ}\right)\)
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
4
\end{gathered}
\] \& \begin{tabular}{l}
Angles may be seen on the diagram. \\
FT 'their \(75^{\circ}+90^{\circ}\) provided M1 awarded
\end{tabular} \\
\hline \begin{tabular}{l}
10. (a) 8 yellow, 12 green, 6 blue balls \\
Red: 4/30 \\
Yellow: 8/30 \\
Green: 12/30 \\
Blue: \(6 / 30\) \\
(b) \(4 / 30+6 / 30\) \\
\(=10 / 30\)
\end{tabular} \& B2 \& \begin{tabular}{l}
Award B1 for either 8 yellow or 12 green and total is 30 OR \\
8 yellow and 12 green and total is not 30 \\
FT 'their number of balls' / ' their total' OR 'their number of balls' \(/ 30\) \\
Award B1 for two or three correct. \\
Penalise incorrect notation once only \\
Do not penalise incorrect reduction here. If used subsequently in (b) only award M1 A0. \\
B1 for consistent incorrect denominator but correct numerators, e.g. 4/29, 8/29, 12/29, 6/29'. FT from 'their \(\mathrm{P}(\) red \()\) ' + 'their \(\mathrm{P}(\) blue \()\) ' in (a)
\end{tabular} \\
\hline \begin{tabular}{l}
11 (a) \(25 x-3 y\) \\
(b) \(5 \times-3+3 \times 6 \quad(=-15+18)\) 3
\end{tabular} \& \[
\begin{aligned}
\& \text { B2 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
Must be in an expression, B1 for either \(25 x\) or \(-3 y\) \\
Award B1 for \(25 x+-3 y\) \\
If use 3 not -3 award M0 \\
CAO
\end{tabular} \\
\hline (c) \(2 \mathrm{p}+5 \mathrm{p}^{2}\) \& B2 \& Must be in an expression, B1 for either \(2 p\) or \(5 p^{2}\) \\
\hline (d) \(3 y(x-3)\) \& B2 \& B1 for correct partial factorisation eg 3(xy-3y) or \(y(3 x-9)\), or \(3 y(\ldots-3)\) or \(3 y(x-\ldots . . \ldots \ldots .\). \\
\hline \begin{tabular}{l}
(e) Expression \\
Equation
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \\
\hline \begin{tabular}{l}
(f) Conclusion (stated or implied) that (3 x\()^{2}\) is greater with either sight of \(3 \mathrm{x}^{2}=12\) AND \((3 \mathrm{x})^{2}\) \(=36\) \\
OR statement that \((3 x)^{2}\) is 3 times the value of \(3 x^{2}\) OR Sight of \((3 x)^{2}=9 x^{2}\) is sufficient
\end{tabular} \& B1

11 \& Allow sight of $3 x^{2}=12$ AND $(3 x)^{2}=36$ as implied conclusion

\hline 12 (a) 9/30 and 0.3 \& B1 \&

\hline $$
10 / 40 \text { and } 0.25
$$ \& B1 \& FT from 'their 9/30' If B0 awarded for part (a) award SC1 for 9/30 AND 10/40

\hline (b) 0.25 or equivalent \& B1 \& FT their final column entry in (a)

\hline Reason eg 'most throws', 'last value', 'uses all the data'. \& E1
4 \& Do not accept 'better estimate'.

\hline 13. $33\left({ }^{\circ}\right.$) \& B3 \& | B2 for sight of '101-68', or '180-68-79' or ' $180-147$ ' or ' $112-79$ ', OR |
| :--- |
| B1 for appropriate indication of 101° or 147° or 112° |

\hline
\end{tabular}

Methods Unit 1 Foundation Tier January 2015	Mark	Comment
14. (a) 20 (b) 154	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	B1 for $2 \times 7 \times 11$ or for finding multiples for both numbers i.e.(14,) $28,42, \ldots$ and (22,) $44,66, .$. , or factors for both numbers (2×7 and 2×11) or sight of $(14 \times 22=) 308$
(c) Method to find primes with 2 correct prime factors before the $2^{\text {nd }}$ error $\begin{gathered} 2,2,3,3,5 \\ 2^{2} \times 3^{2} \times 5 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \\ \text { A1 } \\ \text { B1 } \\ 6 \\ \hline \end{gathered}$	At least 2 primes found before second error Ignore 1s Correct FT with no 1 s and at least one power >1

METHODS UNIT 1
 HIGHER TIER

Methods Unit 1 Higher Tier January 2015	Mark	Comment
4. Intention to subtract the sum of the 4 angles given from 360° (Sum of remaining 3 angles is) $150\left(^{\circ}\right.$) $40\left(^{\circ}\right), 50\left(^{\circ}\right), 60\left(^{\circ}\right)$	M1 A1 B2	$360-(34+46+53+77)$ Alternative using interior angles: $900-(146+134+127+103)$ Sum of remaining 3 angles is) $390\left({ }^{\circ}\right)$ If M1 awarded, B1 for 3 values all multiples of 10 with sum 'their 150 ' Alternative using interior angles: B1 for values of $120\left({ }^{\circ}\right), 130\left({ }^{\circ}\right), 140\left({ }^{\circ}\right)$ If no marks, award SC1 for answers of $220\left(^{\circ}\right)$, $230\left(^{\circ}\right)$ and $240\left(^{\circ}\right)$ following on from use of the interior angle sum of 900° and treating the given angles as interior. FT to award QWC marks.
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	QWC 2	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
$5 \text { (a) } 20$ (b) 154	B1	B1 for $2 \times 7 \times 11$ or for finding multiples for both numbers i.e. $(14) 28,42,, \ldots$ and $(22) 44,66,, .$. , or factors for both numbers (2×7 and 2×11) or sight of $(14 \times 22=) 308$
(c) Two fractions correctly written in a form that allows for comparison For all three correctly written in forms that allow for comparison	B1 B1	Allow reasonably accurate diagrammatic form (e.g. $13 / 20,15 / 20,12 / 20$ or $0.65,0.75,0.6$ or 65/100, 75/100, 6/10)
$3 / 4,13 / 20,3 / 5$ and in this order or equivalent	B1	CAO. Answer only allow final B1 only
(d) Method to find primes with 2 correct prime factors before the $2^{\text {nd }}$ error $2,2,3,3,5 \quad 2^{2} \times 3^{2} \times 5$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 9 \end{gathered}$	At least 2 primes found before second error Ignore 1s Correct FT with no 1 s and at least one power >1
6(a) 47	B2	B1 for $5 \times 9+8 \times 1 / 4$ (i.e. substitution with $-3^{2}=9$) or for $5 \times-3^{2}+2$ (i.e. substitution shown, may be an arithmetic error in evaluating the $1^{\text {st }}$ term, $8 \times 1 / 4=2$ shown) (B0 for $5 \times-3^{2}+8 \times^{1 / 4}$ or $(\pm) 15^{2}+8 \times^{1 / 4}$) If no marks SC1 for an answer of -43
(b) Conclusion (stated or implied) that $(3 x)^{2}$ is greater with either sight of $3 x^{2}=12$ AND $(3 x)^{2}=36$ OR statement that $(3 x)^{2}$ is 3 times the value of $3 x^{2}$ OR Sight of $(3 x)^{2}=9 x^{2}$ is sufficient	B1	Allow sight of $3 x^{2}=12$ AND $(3 x)^{2}=36$ as implied conclusion

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 Higher Tier January 2015 \& Mark \& Comment \\
\hline \begin{tabular}{l}
7. \(3 \times 35 \div 5\) OR \(4 \times 35 \div 5\) OR equivalent 21(m) \\
28(m)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
CAO \\
CAO \\
Do not accept strategy 35/12 as a MR
\end{tabular} \\
\hline \begin{tabular}{l}
8. Intention to subtract 155 and 45 from \(360^{\circ}\)
\[
\text { (Sum of remaining angles is) } \quad 160\left(^{\circ}\right)
\] \\
Realising one of the remaining angles has to be \(155^{\circ}\) or \(45^{\circ}\) as a kite has 2 equal angles \\
\(155\left({ }^{\circ}\right)\) AND \(5\left({ }^{\circ}\right)\) \\
\(45\left({ }^{\circ}\right)\) AND \(115\left({ }^{\circ}\right)\)
\end{tabular} \& M1
A1
B1

B1
B1

5 \& | $\begin{array}{rr} 360-155-45 & \text { If considering exterior angles: } \\ 360-(180-155)-(180-45) \\ \left(\text { Sum of remaining exterior angles is) } 200\left({ }^{\circ}\right)\right. \end{array}$ |
| :--- |
| Realising that one of the remaining exterior angles is 35° or 135° |
| Allow B1 following M1 A0 for interior angles of $(155,45)$, and two angles equal to 'their 160 ' $\div 2$ |
| An unsupported single correct set of all four angles e.g. $(155,45) 155,,5\left(^{\circ}\right)$ or $(155,45) 45,,115\left(^{\circ}\right)$ receives M1 A1 B1 with B1 B0 or B0 B1depending on the solution given. |

\hline 9(a) Indicates there are 4 ways of scoring 5 Indicates there are 40 possible outcomes, e.g. denominator 40 of a fraction

$$
4 / 40(=1 / 10)
$$ \& B1

B1

B1 \& | $1,4 \quad 2,3 \quad 3,2 \quad 4,1$ |
| :--- |
| Accept sight of .../8 $\times \ldots / 5$ |
| Do not accept .../8 + .../5 |
| Ignore incorrect cancelling |
| Award B3 for an answer of 4/40 |

\hline (b) $200 \times 1 / 8$ or equivalent

$$
25
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& A final answer of 25/200 implies M1, A0

\hline (c) Explanation comparing answer from (b) with 80, e.g. 'six more often than expected' \& E1 \&

\hline | (d) Notices or implies that the (first) spinner must land on numbers other than 6 less often |
| :--- |
| Implies best estimate would be less than (a) | \& M1

A1

8 \& | Accept explanation that states, e.g. ' 6 not used in scoring 5', or ' 6 is opposite the numbers needed to score 5' |
| :--- |
| If no marks, SC1 if best estimate less than (a) with a reason based on an understanding of bias. |

\hline | $\text { 10(a) } 6$ |
| :--- |
| (b) $\mathrm{n}^{2}+5$ or equivalent | \& B1 \& Accept unsimplified equivalents B2 for sight of $\mathrm{n}^{2} \pm \ldots$ (not for n^{2}), or a partially correct expression (e.g. looking at strips) B1 for (9,) 14, 21, 30 with sight of second difference 2 , or equivalent numerical pattern, or n^{2}

\hline 11(a) Correctly completing the tree diagram 0.2, 0.6. 0.6, 0.4 \& B2 \& B1 for any one pair of branches correct (total 1)

\hline $$
\text { (b) } \begin{aligned}
& 0.8 \times 0.4 \text { or } 8 / 10 \times 4 / 10 \text { or equivalent } \\
& =0.32 \text { or } 32 / 100 \text { or equivalent. }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& An incorrect answer of 3.2 is awarded M1, A0

\hline (c) 0.2×0.4 or $2 / 10 \times 4 / 10$ or equivalent \& M1 \& Or other complete method. FT for their P (stairs up) $\times \mathrm{P}($ stairs down $)$ correctly evaluated, or by alternative method

\hline $=0.08$ or $8 / 100$ or equivalent \& A1
6 \& An incorrect answer of 0.8 from a correct tree diagram is awarded M1, A0

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 Higher Tier January 2015 \& Mark \& Comment \\
\hline \begin{tabular}{l}
12(a) \(7 \times 10^{-6}\) \\
(b)
\[
\begin{gathered}
7 x-3 x=m+h \text { or } 4 x=m+h \\
x=(m+h) / 4
\end{gathered}
\] \\
(c) \((x+7)(x-7)\) \\
(d)(i)
\[
\begin{gathered}
2 x^{2}+6 x+x+3 \\
2 x^{2}+7 x+3
\end{gathered}
\] \\
(ii)
\[
\begin{aligned}
\& 2 \mathrm{x}^{2}+7 \mathrm{x}+3-7=0 \text { or } 2 \mathrm{x}^{2}+7 \mathrm{x}-4=0 \\
\& (2 \mathrm{x}-1)(\mathrm{x}+4)(=0) \\
\& \quad \mathrm{x}=1 / 2 \text { AND } \mathrm{x}=-4
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
M1 \\
M1 \\
A1 \\
9
\end{tabular} \& \begin{tabular}{l}
FT until \(2^{\text {nd }}\) error \\
Allow \(\mathrm{x}=(\mathrm{m}+\mathrm{h}) /(7-3)\) \\
ISW \\
Any 3 correct terms \\
CAO \\
FT their \(2 x^{2}+7 x+3\) of equivalent difficulty OR correct use of formula with \(b^{2}-4 a c\) correctly evaluated (including FT equivalent difficulty) CAO
\end{tabular} \\
\hline \begin{tabular}{l}
13(a) \(a \times 16.4=12 \times 4.1\) or equivalent
\[
\mathrm{a}=3(\mathrm{~cm})
\] \\
(b)
\[
\mathrm{b}=69\left(^{\circ}\right)
\] \\
(c) Angle opposite \(146^{\circ}\) in cyclic quadrilateral,
\[
180\left(^{\circ}\right)-146\left(^{\circ}\right) \quad\left(=34\left(^{\circ}\right)\right)
\] \\
OR Reflex angle at the centre
\[
2 \times 146\left(^{\circ}\right) \quad\left(=292\left(^{\circ}\right)\right)
\]
\[
\mathrm{c}=68^{\circ}
\]
\end{tabular} \& M1
A1
B1
M1

A1

5 \& | Accept indicated on the diagram or implied by further working. |
| :--- |
| The calculation $180\left({ }^{\circ}\right)-146\left({ }^{\circ}\right)\left(=34\left({ }^{\circ}\right)\right)$ alone or with a misinterpretation as the angle at the centre is M0 |
| Allow $(\mathrm{O}=) 2 \times 146\left(^{\circ}\right)$ provided not indicated as the acute angle on the diagram |
| CAO. Accept a correct answer without working for M1, A1; do not accept an incorrectly placed 68°. |

\hline 14. Numerator of $7(3 x+5)-4(x-3)$ Denominator of $(x-3)(3 x+5)$

\[
\frac{17 \mathrm{x}+47}{(\mathrm{x}-3)(3 \mathrm{x}+5)} \quad or \quad \frac{17 \mathrm{x}+47}{3 \mathrm{x}^{2}-4 \mathrm{x}-15}

\] \& | M1 |
| :--- |
| M1 |
| A2 |
| 4 | \& | FT 1 error from expansion of brackets or collection of like terms to allow A1, or |
| :--- |
| A1 for a correct numerator with an incorrect expansion of the denominator or if the denominator un-simplified $\left(3 x^{2}-9 x+5 x-15\right)$ If A2, penalise further incorrect work -1 SC1 for sight of $17 x+47$ if no other marks awarded |

\hline | 15. Sight (gradient) $-12 / 8$ or $8 / 12$ or equivalents |
| :--- |
| Selects $3 y=2 x+5$ AND $2 x-3 y=8$ only | \& B1

B2 \& | Provided 1st B1 is awarded, allow further B1 for either selected with no more than 1 incorrect selection. |
| :--- |
| Sight of gradient $12 / 8$ with perpendicular gradient $-8 / 12$ award B0, B2 for $y=(-2 x+8) / 3$ AND $2 x+3 y=8$, or BO B1 for either selected with no more than one incorrect selection. |

\hline Reason, e.g. 'gradient given times gradient of these lines is -1 ', or '(perpendicular) gradient is $2 / 3$ ', or ' $\mathrm{m} \times-1 / \mathrm{m}=-1$ ', or 'product of gradients is -1 ' \& E1 \& FT their gradient

\hline
\end{tabular}

Methods Unit 1 Higher Tier January 2015	Mark	Comment
16(a) $\mathrm{a}=5$ $x^{2}+10 x+25-11$ or $(x+5)^{2}-25+14$ OR alternative full method to find b $\mathrm{b}=-11$ (b) $\begin{aligned} (x+5)^{2}-11 & =0 \\ (x+5)^{2} & =11 \\ x+5 & =(\pm) \sqrt{ } 11 \\ x & =-5 \pm \sqrt{ } 11 \end{aligned}$	B1 M1 A1 B1 M1 M1 A1 7	Accept an embedded answer FT their a Accept an embedded answer FT their (a) provided it is equivalent in difficulty If 'their 11' is negative then M0 CAO Must show \pm or two answers Use of formula leading to $(-10 \pm 2 \sqrt{ } 11) / 2$ gets $B 2$, $(-10 \pm \sqrt{ } 44) / 2$ gets $B 0$
17. Note: Shaded $P(A \cup C)=0.65$ Method to find B not intersecting with A nor C , e.g. $1-0.65-0.01 \quad(=0.34)$ $\begin{aligned} & \mathrm{P}(\mathrm{~B})=0.34+0.1+0.2+0.3 \\ & \mathrm{P}(\mathrm{~B})=0.94 \end{aligned}$	B1 B3	Evidence for B marks may be seen in working Correct indication of 0.01 For Venn diagram shown, correct indication of - $0.1,0.2$ and 0.3 , or - the 0.3 shown and $A \cap B$ is 0.3 used - the 0.1 shown and $B \cap C$ as 0.5 used If not B3 then mark individually as follows: B1 for correct indication of 0.2 , B1 for correct indication of 0.3 , B1 for correct indication of 0.1 Allow " $P(B)$ " $=0.34$ (not from $2-1.66$) (FT 'their 0.34') CAO Alternative $\begin{array}{lrr} \mathrm{P}\left((\mathrm{~A} \cup \mathrm{C}) \cap \mathrm{B}^{\prime}\right)=0.65-0.2-0.3-0.1(=0.05) & \mathrm{M} 1 \\ \mathrm{P}(\mathrm{~B})=1-0.01-0.05=0.94 & \text { (FT 'their } 0.05 \text { ') } & \mathrm{M} 1 \\ \mathrm{P}(\mathrm{~B})=0.94 & (\mathrm{CAO}) & \\ \mathrm{A} 1 \end{array}$

METHODS UNIT 2
FOUNDATION TIER

Methods Unit 2 Foundation Tier January 2015	Mark	Comment
1. + - \div \times $\times+$ $\div-$ or $-x$	B1 B1 B1 B1 B1 B1 6	
2. (a) (i) 4679 (ii) 9647 (b) $20 \%, 0.2,1 / 5$ indicated (c) (i) 400000 or four hundred thousand (ii) 250 or two hundred and fifty (d) 12 and 24 indicated	B1 B1 B3 B1 B1 B2 9	B2 for 3 correct and 1 incorrect B2 for 2 correct and no more than 1 incorrect B1 for 1 correct and no more than 2 incorrect B1 for 2 or 3 correct and 2 incorrect B1 for 2 correct and 1 incorrect OR 1 correct and no more than 1 incorrect
3. D and H E and G	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ 2 \end{gathered}$	
4. (a) (£) $3.60 \div 20$ (£) 0.18 or $18(\mathrm{p})$ (£) 0.18×4 or 18×4 (£) 0.72 or $72(p)$ (b) $53 / 100 \times 4.2$ or equivalent 2.226	M1 A1 m1 A1 M1 A1 6	OR 1 correct step, e.g. 10 pens cost (£)1.80 FT their 0.18 or 18 if M1 awarded Do not accept $£ 72$ or 0.72 p Award SC1 for sight of ($5.5 \times 4=$) 22(p) or $5.55 \ldots \times 4=22.22 \ldots$ following $20 \div 3.60$ Alternative solution: $\begin{array}{rlr} 20 \div 4=5 & M 1 \\ (£) 3.60 \div 5 & & M 1 \\ & =(£) 0.72 & \text { OR } \\ & 72(p) & A 2 \end{array}$ For incorrect units, award A1 only e.g. 0.72 p or $£ 72$ Accept 2.2 or 2.23 if the correct answer is seen. Otherwise, award SC1 for unsupported an answer of 2.2 or 2.23 .
$\text { 5. (a) } 13 \times 9 \text { } \begin{aligned} & 117\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1	
(b) Attempting to add two pairs of numbers to make 36 or any two numbers that add to 18	M1	Numbers must be less than 18
Attempting to add two numbers (or two pairs of numbers) with one being double the other	M1	Numbers must be less than 18
Length $=12$, Width $=6$	A1	CAO (Allow Length $=6$, Width $=12$)
	5	

Methods Unit 2 Foundation Tier January 2015	Mark	Comment
8. (a) 49 (b) $\begin{gathered} 5 y=55 \\ y=11 \end{gathered}$ (c) (i) $\begin{aligned} & x=5 \\ & y=-1 \end{aligned}$ (ii) $(2 \times 5)+(3 \times-1)$	B1 7	Accept embedded answers in (a), (b) and (c)(i). FT one error ISW FT 'their x ', i.e. $y=4-$ 'their x ' FT 'their x ' and 'their y ' for B1, and for B2 provided $y<0$
9. 113.6	$\begin{gathered} \text { B2 } \\ 2 \\ \hline \end{gathered}$	B1 for 113(.5997747...) OR B1 for 134.2(...) - 20.6(...)
$\begin{aligned} & \text { 10. } 282 / 3 \text { or } 450 \times 20 / 100 \\ & 94 \\ & \text { Missing number } 92 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ 4 \end{gathered}$	
11. Examples: (a) $(8+4) \times 5$ or $7 \times 8+4$ or $5 \times 8+24-4(=60)$ (b) $24 \div 4-(8+5)$ or $2-(5+4)$ or $(5+2) \div 7-8$ (=-7) (c) $7 \times(5-2)$ or $7 \times(8-5)$ or $24+2-5 \quad(=21)$	B1 B1 B1 3	Accept equivalent correct responses using ONLY the cards given, not repeats within a single calculation Brackets must be used correctly Accept $-24 \div 2+5$ or $24 \div-2+5$
12. (a) $\ldots \times \ldots \times 11=385$ or $385 \div 11$ Attempt to find two whole numbers to multiply to 35 $7(\mathrm{~cm})$ and $5(\mathrm{~cm})$ OR 35(cm) and $1(\mathrm{~cm})$ (b) $1 / 2(4.5+8.8) \times 1.9$ $12.6(35) \mathrm{cm}^{2}$ (c) $\pi \times 8^{2}$ $201 .\left(06 \ldots . \mathrm{cm}^{2}\right)$	S1 M1 A1 M1 A1 U1 M1 A1 8	Idea towards area of the base Correct answers awarded all 3 marks. Independent mark Accept 200.9(6) to 201.143
13. (a) $\begin{gathered} x+17=5 \times 3 \\ x=-2 \end{gathered}$ (b) $5 x<22+188$ $x<42$	M1 A1 M1 A1 4	Accept embedded answer in (a) Or $x / 3=5-17 / 3$ No marks for ' $=$ ' unless finally replaced to give $x<42$, then award M1, A1. An answer of $x<210 / 5$ gets M1, A0 CAO If no marks, award SC1 for $5 x<166(x<166 / 5)$ with an answer $x<33.2$, or for $5 x<200$ with an answer $x<40$

Methods Unit 2 Foundation Tier January 2015	Mark	Comment
14.(a) Correct reflection (b) Correct rotation	B2 B2 4	B1 for reflection in the y-axis OR B1 for 4 of the vertices reflected correctly B1 for clockwise 90° rotation about $(1,-1)$ OR B1 for anticlockwise 90° rotation about $(-1,1)$
$\begin{aligned} & 15 .\left(p^{2}=\right) 2.7^{2}+4.1^{2} \\ & p^{2}=24.1 \text { or } p=\sqrt{ } 24.1 \\ & \qquad\left(q^{2}=\right) 14.6^{2}-6.2^{2} \text { or } 14.6^{2}=q^{2}+6.2^{2} \\ & \qquad q^{2}=174.72 \text { or } q=\sqrt{ } 174.72 \\ & (p=) 4.9(09175 \ldots \mathrm{~cm}) \text { AND }(q=) 13.2(18 . . \mathrm{cm}) \end{aligned}$	M1 A1 M1 A1 A1 5	Correct statement Power 2 or intention to take square root must be shown Correct statement Power 2 or intention to take square root must be shown Accept rounded or truncated from correct working Alternative method using trigonometry: M1 complete method to obtain an expression involving p, e.g. angle $=\tan ^{-1}(2.7 / 4.1)$ AND $\sin ($ angle $)=2.7 / p$ A1 expression with p as subject: e.g. $p=2.7 / \sin (\text { angle })$ M1 complete method to obtain expression involving q, e.g. angle $=\sin ^{-1}(6.2 / 14.6)$ AND $\cos ($ angle $)=q / 14.6$ Al expression with q as subject: e.g. $q=14.6 \cos ($ angle $)$

METHODS UNIT 2
 HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline Methods Unit 2 Higher Tier January 2015 \& Mark \& Comment \\
\hline \begin{tabular}{l}
5.(a) Indication of: \\
(b) \((x) \times 1.2(0)\) or equivalent, where \(x \neq 0\) \\
\((x \times 1.2(0)) \times \mathbf{0 . 8}(0)\) or equivalent, where \(x \neq 0\) \\
\(x \times 1.2(0) \times 0.8(0)\) correctly evaluated
\end{tabular} \& B3

M1
M1
A1

6 \& | All 4 correct calculations, or |
| :--- |
| B2 for any 3 correct, or |
| B1 for any 1 or 2 correct |
| Need not be shown as a measure with units, ignore units Accept algebraic working throughout FT their value of $(x \times 1.2(0))$ provided $>x$ Accept sight of $\times 1.2$ for M1 and $\times 0.8$ for M1, or sight of $\times 0.96$ for $M 2$ $x \times 0.96$ correctly evaluated Accept a conclusion that less than the original because decrease amount > increase amount, provided both amounts have been correctly evaluated. |

\hline | 6. |
| :--- |
| (a) $(x=) 4$ |
| (b) $\begin{array}{cccc} 12 \mathrm{x}-27= & 33 & \text { OR } & 4 \mathrm{x}-9=33 / 3 \\ 12 \mathrm{x}=60 & \text { OR } & 4 \mathrm{x}=20 \\ x=5 & & \end{array}$ |
| (c) $\begin{gathered} x+17=5 \times 3 \\ x=-2 \end{gathered}$ |
| (d) $\mathrm{x}<349 / 66$ or $\mathrm{x}<5.2878 \ldots$ or $\mathrm{x}<5^{19} / 66$ Answer of 5 |
| (e) $5 \mathrm{x}<22+188$ $x<42$ | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 |
| 10 | \& | Accept embedded answers in (a), (b) \& (c) |
| :--- |
| FT until $2^{\text {nd }}$ error |
| Or $\mathrm{x} / 3=5-17 / 3$ |
| An answer of 5 implies ' $<$ ' applied, so M1, A1 |
| No marks for ' $=$ ' unless final replaced to give $x<42$ then award M1, A1. An answer of $x<210 / 5$ gets M1, A0 CAO Mark final answer If no marks award SC1 for $5 \mathrm{x}<166(\mathrm{x}<166 / 5)$ with an answer $\mathrm{x}<33.2$, or for $5 \mathrm{x}<200$ with an answer $\mathrm{x}<40$ |

\hline $$
\begin{aligned}
& \text { 7. }\left(\mathrm{p}^{2}=\right) 2.7^{2}+4.1^{2} \\
& \mathrm{p}^{2}=24.1 \text { or } \mathrm{p}=\sqrt{24.1} \\
& \qquad\left(\mathrm{q}^{2}=\right) 14.6^{2}-6.2^{2} \text { or } 14.6^{2}=\mathrm{q}^{2}+6.2^{2} \\
& \\
& \mathrm{q}^{2}=174.72 \text { or } \mathrm{q}=\sqrt{ } 174.72
\end{aligned}
$$

\[
(\mathrm{p}=) 4.9(09175 ··· \mathrm{~cm}) AND(\mathrm{q}=) 13.2(18 ··· \mathrm{~cm})

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| A1 |
| 5 | \& | Correct statement |
| :--- |
| Power 2 or intention to take square root must be shown |
| Correct statement |
| Power 2 or intention to take square root must be shown Accept rounded or truncated from correct working Alternative method using trigonometry: |
| M1 complete method to obtain an expression involving p e.g. angle $=\tan ^{-1}(2.7 / 4.1)$ AND $\sin ($ angle $)=2.7 / p$ |
| Al expression with p as subject: e.g. $p=2.7 / \sin ($ angle) |
| M1 complete method to obtain expression involving q, |
| e.g. angle $=\sin -1(6.2 / 14.6)$ AND $\cos ($ angle $)=q / 14.6$ |
| Al expression with q as subject: e.g. $q=14.6 \cos ($ angle) |

\hline | 8.(a) Correct reflection |
| :--- |
| (b) Correct rotation |
| (c) 0,0 $-1 / 2$ or -0.5 or 'negative half' or equivalent | \& B2

B2

B1
B2

7 \& | B1 for reflection in the y-axis OR |
| :--- |
| B1 for 4 of the vertices reflected correctly |
| B1 for clockwise 90° rotation about $(1,-1)$ OR |
| B1 for anticlockwise 90° rotation about ($-1,1$) |
| B1 for sight of $1 / 2$ or 0.5 or half (including $+1 / 2$) |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Methods Unit 2 Higher Tier January 2015 \& Mark \& Comment \\
\hline \begin{tabular}{l}
9.(a)
\[
\begin{aligned}
\& (\mathrm{b}=) 3 / 24 \quad(=1 / 8) \\
\& (\mathrm{a}=) 48 / 1 / 8 \quad \text { or } \quad(\mathrm{a}=) 48 \times 8(/ 1) \\
\& (\mathrm{a}=) 384
\end{aligned}
\] \\
(b) \((\) Scale factor \(=) 4 / 0.8 \quad(=5) \quad\) OR \(\quad 0.8 / 4 \quad(=0.2)\) OR \(y=\mathrm{k} x\) with \(0.8=\mathrm{k} \times 4\) or \(x=\mathrm{k} y\) with \(4=\mathrm{k} \times 0.8\)
\[
\begin{aligned}
\text { OR } \frac{x}{4}= \& \frac{6}{0.8} \text { OR } \frac{x}{6}=\frac{4}{0.8} \\
(x=) \& 6 \times(4 / 0.8) \\
\& (6 \times 5)
\end{aligned}
\]
\[
=30
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
6
\end{tabular} \& \begin{tabular}{l}
FT \(\quad(a=) 48 / 3 / 24\) gains M2 \\
FT 'their calculated b' \\
CAO \\
Allow M1 for correct substitution for their SF in their proportion equation, or for a reversed substitution in their proportion equation correctly evaluated CAO \\
A0 if left as 30 proportional to 6
\end{tabular} \\
\hline \begin{tabular}{l}
10.(a) \(5.4(4) \times 10^{8}\) \\
(b) \(2 \times 10^{18}\) \\
(c) \(1000 \times 6000000\) or 6000000000 \\
or \(1000 \times 6 \times 10^{6}\)
\[
6 \times 10^{9}
\]
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
\] \& \\
\hline 11. Correct substitution into the quadratic formula
\[
\begin{aligned}
\& x=\left(-5 \pm \sqrt{ }\left(5^{2}-4 \times 1 \times 2\right)\right) / 2 \times 1 \\
\& x=(-5 \pm \sqrt{ } 17) / 2
\end{aligned}
\]
\[
x=-0.44 \text { with } x=-4.56
\] \& M1
A1

A1

3 \& | Allow 1 slip in substitution |
| :--- |
| OR sight of $0.43(84 \ldots)$ with $-4.5(615 \ldots)$ |
| Alternative using completing the square: |
| M1 for $x+\frac{5}{2}= \pm \sqrt{\frac{25}{4}-2}$ |
| A1 for $x=-\frac{5}{2} \pm \sqrt{\frac{17}{4}}$ |
| Must be to 2 decimal places |
| Award all 3 marks for correct unsupported answers. |

\hline | 12. Label axes 'length (of tile in cm)' and 'width (of tile in cm)' |
| :--- |
| Both scales uniform from 0 to 20 inclusive Sight of any two points correct, in list or plotted Straight line drawn from $(0,20)$ to $(20,0)$ exclusive | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 4 | \& | Either order. Accept 1 and w. |
| :--- |
| Allow $(0,20)$ and $(20,0)$ |
| Accept including $(0,20)$ and $(20,0)$ |
| Allow if the line touches the axes, but intention clear to end at the axes (allow $\pm 2 \mathrm{~mm}$). However, A0 if this line extends beyond an axis. |

\hline | 13.(a) $x / 8.32=3.6 / 5.76$ or equivalent or sight of scale factor 1.6 or 0.625 if used appropriately $(x=) 5.2(\mathrm{~cm})$ |
| :--- |
| (b) Sight of 1.6^{2} or 0.625^{2} or equivalent |
| $\left(\right.$ Area larger shape $=$) $1.6^{2} \times 13.6$ or $13.6 \div 0.625^{2}$ $34.8(16)\left(\mathrm{cm}^{2}\right)$ | \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 |
| 5 | \& | FT their scale factor from (a) provided it was >1 and <2 (or its reciprocal provided >0.5 and <1) |
| :--- |
| Accept an answer of $35\left(\mathrm{~cm}^{2}\right)$ from correct working only. |

\hline | 14.(a) $\begin{gathered} \mathbf{M N}=-\mathbf{O M}+\mathbf{O N}(=-(2 \mathbf{a}+3 \mathbf{b})+(5 \mathbf{a}+7 \mathbf{b})) \\ =3 \mathbf{a}+4 \mathbf{b} \end{gathered}$ |
| :--- |
| (b) Sight of $-1 / 2(8 \mathbf{a}-2 \mathbf{b})$ or $1 / 2(8 \mathbf{a}-2 \mathbf{b})$ $\begin{aligned} & \mathbf{R N}=-1 / 2 \mathbf{O P}+\mathbf{O N}((=-1 / 2(8 \mathbf{a}-2 \mathbf{b})+(5 \mathbf{a}+7 \mathbf{b})) \\ &=\mathbf{a}+8 \mathbf{b} \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 |
| 5 | \& | Accept intention of brackets CAO. Must be simplified form |
| :--- |
| May be simplified at a later stage |
| Intention of brackets |
| Award SC1 for $-4 \mathbf{a}-\mathbf{b}+5 \mathbf{a}+7 \mathbf{b}$ if B1 not previously awarded. |
| CAO. Must be simplified form |

\hline
\end{tabular}

Methods Unit 2 Higher Tier January 2015	Mark	Comment
15. Strategy: attempt to calculate BD, then CD and then attempt $1 / 2 \mathrm{abSinC}$ $\begin{aligned} & \mathrm{BD}^{2}=6.2^{2}+5.8^{2}-2 \times 6.2 \times 5.8 \times \cos 78\left({ }^{\circ}\right) \\ & \mathrm{BD}^{2}=57.1269912 \ldots \text { or } \mathrm{BD}=\sqrt{57.12 \ldots(}(=7.558 \ldots \mathrm{~cm}) \\ & \mathrm{DC}=\sin 65^{\circ} \times \mathrm{BD} / \sin 85\left({ }^{\circ}\right) \\ & \mathrm{DC}=6.876 \ldots(\mathrm{~cm}) \end{aligned}$ Area $\mathrm{DEC}=1 / 2 \times 3.7 \times \mathrm{DC} \times \sin 59\left({ }^{\circ}\right)$ $10.9\left(\ldots \mathrm{~cm}^{2}\right)$	S1 M1 A1 M2 A1 M1 A1 8	Correct substitution Accept rounded or truncated M1 for correct use of sine rule with DC implicit Accept rounded or truncated FT correct evaluation with their BD provided all previous M marks awarded FT correct evaluation with their DC provided all previous M marks awarded and without PA Penalise (PA) premature approximation only by not awarding this final A mark
16.(a) $\quad 1 / 2(x+3)(y+6)$ (=28.875) $x y+3 y+6 x+18=2 \times 28.875$ OR $1 / 2 x y+1.5 y+3 x+9=28.875$ $x y+3 y+6 x=39.75$ (b) $y+x+3+y+x+3=20$ or $y+x+3=10$ or $2 y+2(x+3)=20 \quad$ or equivalent Method to solve, e.g. appropriate substitution of either $x=7-y$ or $y=7-x$ into $x y+3 y+6 x=39.75$ $x^{2}-10 x+18.75=0 \text { or } y^{2}-4 y-2.25=0$ $(x-2.5)(x-7.5)=0 \text { or }(y-4.5)(y+0.5)=0 \text { or }$ $(2 x-5)(2 x-15)=0 \text { or }(2 y-9)(2 y+1)=0$ or equivalent $\mathrm{x}=2.5(\mathrm{~cm}) \text { AND } \mathrm{y}=4.5(\mathrm{~cm})$ Dimensions of the rectangle are $(\mathrm{y}=) 4.5(\mathrm{~cm}) \text { AND }(\mathrm{x}+3=) 5.5(\mathrm{~cm})$	B1 M1 A1 B1 M1 A1 A1 A1 B1 9	Intention of brackets must be shown in subsequent working Must be convincing from correct working Intention of brackets may be shown in subsequent working Accept sight of unsimplified substitutions, intention clear. For the intention of substitution not the accuracy of the transformed equation, so FT $x=$ 'their $\pm 7 \pm y^{\prime}$ or $y=$ 'their $\pm 7 \pm x$ ' and other similar substitutions following B0, for M1 and possible final B1 only. $\begin{aligned} & \text { OR }-x^{2}+10 x-18.75=0 \text { or }-y^{2}+4 y+2.25=0 \\ & \text { OR } x=(10 \pm \sqrt{25}) / 2 \text { or } y=(4 \pm \sqrt{ } 25) / 2 \end{aligned}$ Ignore inclusion of $x=7.5$ or $y=-0.5$ A0 B0 if the only solutions given do not satisfy $-3<x<7$ and $0<y<10$ Special case: Area of rectangle $=20$ B0 Eliminating y (leading to $6 \mathrm{x}=19.75$) $\mathrm{x}=3.2(9166 \ldots) \text { AND } \mathrm{y}=3.1(788 \ldots)$ truncated or rounded A0 A0 SC A1 Only depends on the award of M1 With no extra spurious dimensions
17.(a) Idea of right angled triangle shown or used with height b , base a $\begin{aligned} & \cos \theta=a(/ 1) \\ & \tan \theta=b / a \\ & \sin \theta=b(/ 1) \end{aligned}$	M1 A1 A1 A1 4	Any correct answer implies M1 OR a $/ \sqrt{ }\left(a^{2}+b^{2}\right)$ OR $b / \sqrt{ }\left(a^{2}+b^{2}\right)$ Penalise -1 once only for consistent use of values other than a and b providing the hypotenuse is still 1

WJEC

245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

