Surname
Other Names

Centre Number	Candidate Number

GCSE LINKED PAIR PILOT
4363/01

METHODS IN MATHEMATICS
 UNIT 1: Methods (Non-Calculator) FOUNDATION TIER

A.M. THURSDAY, 21 May 2015

1 hour 30 minutes

CALCULATORS ARE NOT TO BE USED FOR THIS PAPER

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
Take π as 3.14 .

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	10	
2.	3	
3.	4	
4.	7	
5.	5	
6.	8	
7.	5	
8.	4	
9.	3	
10.	11	
11.	6	
12.	4	
13.	5	
14.	5	
Total	80	

The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 6.

Formula List

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

1. (a) (i) Write down, in figures, the number fifty thousand and fourteen.
(ii) Write down, in words, the number 630000.
(b)
22 26 27
32
36
37
$\begin{array}{lllll}42 & 46 & 47 & 52 & 54\end{array}$

Using only the numbers above, write down
(i) the sum of 19 and 27 ,
(ii) the difference between 100 and 74 ,
(iii) the answer when 6 is multiplied by 7 ,
(iv) the answer when 94 is divided by 2 ,
\qquad
(v) a factor of 72 ,
\qquad
(vi) a multiple of 8 .
\qquad
(c) (i) Write 314 correct to the nearest 10.
(ii) Write 2611 correct to the nearest 1000.

(a) Use a pair of letters, as above, to describe a line which is horizontal.
\qquad is horizontal.
(b) Use a pair of letters, as above, to describe two lines which are parallel to each other. [1] The line \qquad is parallel to the line \qquad .
(c) Use a pair of letters, as above, to describe two lines which are perpendicular to each other.

The line \qquad is perpendicular to the line \qquad ...
3. (a) Write down the coordinates of the points P, Q and R shown in the grid below.

The coordinates of P are (. \qquad
\qquad ..).

The coordinates of Q are \qquad .., ... \qquad ..).

The coordinates of R are (\qquad .., .. \qquad ..).
(b) P, Q, R and S are the vertices of a rectangle.

Plot the 4th vertex of the rectangle on the grid above and label it as the point S.
4. (a) Fill in the blanks to match each event to its chance of happening.

Obtaining a BLUE counter when selecting one counter at random from a bag containing 20 blue counters

Obtaining a \qquad counter when selecting one counter at random from a bag containing 50 red and 5 yellow counters

Choosing the number from five cards numbered 1 to 5
(b) There are 50 members in a tennis club.

Some of these members have visited the Wimbledon Championship and some have not. This information is displayed in the following table.

	Male	Female	Total
Visited Wimbledon Championship	24	5	29
Have not visited Wimbledon Championship	6	15	21
Total	30	20	50

What is the probability that a member chosen at random
(i) is male?
(ii) has visited the Wimbledon Championship?
\qquad
(iii) is a female who has not visited the Wimbledon Championship?
5. Write down the answer to each calculation in the space provided.

Match the calculations that have the same answer.
One has been done for you.

6. You will be assessed on the quality of your written communication in this question.

Anthony, Blodwen and their two children go swimming every Saturday and Sunday for a whole year.
The family can go swimming at the Holystack Leisure Centre or the Beaucastle Leisure Centre, which are both local.
At each leisure centre it costs $£ 3$ for an adult and $£ 2$ for a child to go swimming.
The leisure centres have the following membership offers available.

The family want to pay as little as possible.
Should the family pay every Saturday and Sunday or choose one of the offers available at the leisure centres?
You must show all your workings, and give a reason for your answer.

[^0]

Using the number machine, calculate
(i) the OUTPUT when the INPUT is 7
(ii) the OUTPUT when the INPUT is -5
(iii) the INPUT when the OUTPUT is 10 .
\qquad
8. (a) Evaluate $\frac{5}{10}+\frac{8}{10}$.

Write your answer as a mixed number.
\qquad
(b) Write 15 seconds as a fraction of 1 minute in its simplest form.
9.

Diagram not drawn to scale

Find the size of angle x.
(
\qquad
\qquad
\qquad
10. (a) Simplify $5 p+3 q+10 r-8 q$.
(b) Expand $x\left(x^{2}+7\right)$.
(c) Factorise $3 x^{2}+27 x$.
\qquad
(d) equation inequality formula expression

Use one of the special names above to describe the following
(i) $10 x+5<35$
(ii) $9 y+1=19$.
(e) Use the following clues to find the missing number.

- The number is between 300 and 400 .
- It is a multiple of 30 and 45 .
\qquad
\qquad
\qquad
\qquad
Missing Number is

11. (a) Place the whole numbers $1,2,3,4,5,6,7,8,9$ and 10 in the correct positions in the Venn diagram.
ε

(b) A whole number is selected at random from the set $\{1,2,3,4,5,6,7,8,9,10\}$. Find the probability that the number selected is:
an odd number an odd number that is a factor of 24
not a multiple of 5 and not a factor of 24 .
12. A spinner shows 5 colours.

The spinner was spun 50 times.
Some of the outcomes were recorded in a table.

Colour	Purple	Black	White	Red	Yellow
Number of times	7	8	20		

(a) Red occurred twice as many times as yellow.

Complete the table above.
\qquad
\qquad
\qquad
\qquad
(b) Write down the best estimate for the following probabilities on a single spin. You must express each of your answers as a decimal.
(i) The probability of obtaining black.
\qquad
\qquad
(ii) The probability of not obtaining white.

Calculate the length of each of the 3 pieces of wire.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A different piece of wire of length 308 cm is cut in the ratio $2: 4: 5$. Calculate the length of each of the 3 pieces of wire.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. (a) The diagram below shows dark and light triangular tiles.

The tiles are all identical isosceles triangles.

Diagram not drawn to scale

Explain why the tiles tessellate.
You must give a reason, based on angle facts, for your answer.
\qquad
\qquad
\qquad
\qquad
(b) Labels have been inserted on the diagram showing the tiles.

The smallest angle in each of the isosceles triangular tiles is 26°.
Use angle facts to show that $A B$ is parallel to $F C$.
You must show your calculations.

BLANK PAGE

BLANK PAGE

[^0]: Examiner
 7. (a) Write down the next term in the following sequence and describe the rule for continuing the sequence.
 5,
 11,
 17,
 23 ,

 Rule: \qquad
 (b) The diagram below shows a number machine.

