$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

MATHEMATICS - UNITISED

JANUARY 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2014 examination in GCSE MATHEMATICS - UNITISED. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Unit 1 - Foundation Tier 1
Unit 1 - Higher Tier 4
Unit 2 - Foundation Tier 8
Unit 2 - Higher Tier 13
Unit 3 - Foundation Tier 16
Unit 3 - Higher Tier 19

UNIT 1 - FOUNDATION TIER

UNIT 1 Foundation Tier	Mark	FINAL MARK SCHEME Comments
1.(a) (2 tins of salmon $)$ $(£ 5.38)$ (3kg of potatoes) $(£) 3.45$ (3 boxes of matches) $(£) 0.96$ $(1 / 2 \mathrm{~kg}$ of sausages) $(£) 2.8(0)$ TOTAL (b) (£)20(.00)-(£)12.59 $=(£) 7.41$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	Accept 96 unless total amount implies $£ 96$. Do not accept 0.96 p unless total amount implies $£ 0.96$ F.T. their amounts. B0 if any 'cost space' left blank. F.T. $£ 20$ - 'their total'. M0 if their total $\geq £ 20$. An unsupported answer of (£) 8.41 implies M1A0.
2.(a) $\left.\begin{array}{l}\text { Showing '20 to } 24 \text { ' AND '25 (to 29)' } \\ \text { Showing a tally method used. } \\ \\ \text { Showing } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right]$ (b) Uniform scale for the frequency axis starting at 0 . Four bars at correct height	B1 B1 B2 B1 B2 7	These need not be correct number of tallies. FT their intervals, provided not overlapping. For the 8, 5 and 13 . B1 for one or two of them correct. B0 for ambiguous placement of scale numbers. B1 for three correct heights. F.T. their numbers in (a). If no scale shown, assume intervals of 1 from 0 to 15 . Penalise uneven bar widths -1 .
3. Karim Bob Elin Alice Dewi -8 -6 -4 $(+) 5$ $(+) 7$	B1 B3 4	For a correct order. Strictly F.T. their scores. There must be at least two different negative scores. For all five correct scores. B2 for three or four correct scores. B1 for two correct scores.
4. (Total distance travelled) 571 (miles) Correct substitution $(571 \times 4 \cdot 546) / 62$ 42 (m.p.g.)	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A2 } \\ 4 \end{gathered}$	May be implied by sight of $2595(\cdot 7 .$.$) or 2596$ (i.e. 571×4.546) F.T. 'their 571 ' if between 300 and 850 inclusive OR an attempt at a sum of distances seen. A1 for $41 \cdot 8(67 \ldots$...)

UNIT 1 Foundation Tier	Mark	FINAL MARK SCHEME Comments
5.(a) \quad(Blue $=)$ $6\left(\mathrm{~m}^{2}\right)$ (Orange $=)$ $1\left(\mathrm{~m}^{2}\right)$	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \end{aligned}$	If no marks gained, allow a B1 for use of Area $=$ length \times width. Allow 2×1 or $2 \times(1+1+1)$ or $(2+2+2) \times 1$. OR 0.25×1 or $0.25 \times(1+1+1+1)$ or $(0 \cdot 25+0 \cdot 25+0 \cdot 25+0 \cdot 25) \times 1$ to illustrate understanding. Also allow B1 for $($ Blue $=) 2 \times 3 \times 3(=18)$ or (Orange $=) 0 \cdot 25 \times 4 \times 4(=4)$. Clear use of perimeter instead of area is B0.
Look for - spelling - clarity of text explanations, - the use of correct units. For QWC2 blue and orange areas must be clearly identified AND the correct units must be given for the areas. QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar FT 'their blue area' $/ 3$, rounded to the nearest whole
(b) $6 / 3 \times 2.50$ (£)5	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ 8 \end{gathered}$	number above, and then multiplied by
6.(a) 90(litres) (b) \quad A correct method shown	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 3 \end{gathered}$	e.g attempt to read graph at 64 yellow and $\times 10$. OR attempt to read graph at 80 yellow and $\times 8$.
7. C B A D	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	
8. $\begin{aligned} (\text { Aled } 12 \times 14+8 & \\ \text { (Thomas) } 85 \times 2.2 & =176(\mathrm{lbs}) \\ & =187(\mathrm{lbs}) \end{aligned}$ Thomas by 11 lbs	M1 A1 M1 A1 A1 5	M1A0 for 176 kg . M1A0 for 187 kg . F.T. only if $160 \mathrm{lbs} \leq$ Aled's weight $\leq 190 \mathrm{lbs}$. Name and correct units must be given. Alternative methods:

UNIT 1 Foundation Tier	Mark	FINAL MARK SCHEME Comments
9.(a) Mode value given as (£)1. Median value given as (£)2. $\begin{aligned} &(\text { Mean }=) 15 \times(\mathfrak{f}) 1+10 \times(\mathfrak{f}) 2+5 \times(\mathfrak{f}) 5+2 \times(\mathfrak{f}) 10 \\ & \div 32 \\ &=(\mathfrak{£}) 2.5(0) \end{aligned}$ (b) $32 \times(£) 3-32 \times(£) 2.5(0)$ or equivalent. $=£ 16$ AND 'Profit'	B1 B1 M1 m1 A1 M1 A1 7	For each B mark, do not award if an incorrect reason is clearly shown. Must be unambiguously shown as the mode value. Must be unambiguously shown as the median value. M1 for a clear attempt at finding $\Sigma \mathrm{fx}$. C.A.O. F.T. 'their mean'. Also M1 for $32 \times(£) 3$ - 'their $\Sigma \mathrm{fx}$ ' OR $\begin{aligned} & 15 \times(£) 2+10 \times(£) 1-5 \times(£) 2-2 \times(\mathfrak{£}) 7 \\ & (=(£) 30+10-10-14=(£) 16) \end{aligned}$ SC1 for sight of 96 and 80 .
10. (a) $720-1 / 4 \times 720-2 / 5 \times 720$ Sight of (£) 180 Sight of (£)288 (Amount left) (£)252 (b) $252 / 720 \times 100$ $=35(\%)$	M1 B1 B1 A1 M1 A1 6	
11.(a) A valid explanation that shows an understanding that the 35 was not included in the divisor. (b) $70 \cdot 3$		Do not accept 'he pressed the wrong buttons'. Allow e.g. 'He forgot the brackets'. Also allow a correct explanation (an explanation, not just a calculation) of what Asif should have done. B1 for 70•2(8846...)
12. Least Value 9950 Greatest Value 10050 72.5	B4 4	B1 for each correct entry. Accept 10049.9 recurring but not 10049-9. Accept 73.49 recurring but not 73.49 . Allow 72min. 30(sec). and $73 \mathrm{~min} 30(\mathrm{sec})$.
13.8240 $\underline{247.2(0)}$ $\underline{8487.2(0)}$ 8741.81(6) or 8741.82 OR 247.2(0) and 254.61(6) (£)501.82	B1 M1 A1 A1 4	For the evaluation of a correct 3\% OR Sight of 1.03 (494.4 implies 2×247.2 and gains B1). For attempting to find 2 different 3%. OR 8240×1.03^{2}. F.T. one error. Must be given correct to the nearest penny. (£) 501.81 is B1M1A1A0. Treat depreciation as a mis-read.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
UNIT 1 \\
Higher Tier
\end{tabular} \& Mark \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
1. (a) A valid explanation that shows an understanding that the 35 was not included in the divisor. \\
(b)
\[
70 \cdot 3
\]
\end{tabular} \& E1
\[
\begin{gathered}
\text { B2 } \\
3 \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
Do not accept 'he pressed the wrong buttons'. Allow e.g. 'He forgot the brackets'. Also allow a correct explanation (an explanation, not just a calculation) of what Asif should have done. \\
B1 for 70•2(8846...)
\end{tabular} \\
\hline \begin{tabular}{l}
2.(a) \\
Mode value given as \((\mathfrak{£}) 1\). \\
Median value given as (£)2.
\[
\begin{aligned}
\&(\text { Mean }=) 15 \times(£) 1+10 \times(£) 2+5 \times(£) 5+2 \times(£) 10 \\
\& \div 32 \\
\&=(£) 2.5(0)
\end{aligned}
\] \\
(b) \(32 \times(£) 3-32 \times(£) 2.5(0)\) or equivalent. \(=£ 16\) AND 'Profit'
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
m1 \\
A1 \\
M1 \\
A1 \\
7
\end{tabular} \& \begin{tabular}{l}
For each B mark, do not award if an incorrect reason is clearly shown. \\
Must be unambiguously shown as the mode value. Must be unambiguously shown as the median value. M1 for a clear attempt at finding \(\Sigma \mathrm{fx}\). \\
C.A.O. \\
F.T. 'their mean'. \\
Also M1 for \(32 \times(£) 3-\) 'their \(\Sigma \mathrm{fx}\) ' OR
\[
\begin{aligned}
\& 15 \times(£) 2+10 \times(£) 1-5 \times(£) 2-2 \times(\mathfrak{£}) 7 \\
\& (=(£) 30+10-10-14=(£) 16)
\end{aligned}
\] \\
SC1 for sight of 96 and 80 .
\end{tabular} \\
\hline \begin{tabular}{l}
3. (Milk required \(1^{\text {st }}\) week) \\
\(7 \times 3 / 5\) \(=4^{1} / 5 \quad \mathrm{OR}^{21} / 5\) \\
(Needs to buy) 5 (cartons) \\
(Milk required \(2^{\text {nd }}\) week) He has \(4 / 5\) of a litre left over. \\
(Requires an extra) \(4^{1 / 5}-4 / 5 \quad\left(=3^{2} / 5\right)\) \\
(Needs to buy) 4 (cartons)
\end{tabular} \& M1
A1
B1

B1
M1

A1 \& | F.T. only if there is a requirement to round up. |
| :--- |
| Sight of $4 / 5$ gains B1. F.T. 'their 5 cartons'. |
| F.T. 'their $4 /{ }^{1}$ ' - 'their $4 / 5$ ' |

\hline | Look for |
| :--- |
| - spelling |
| - clarity of text explanations, |
| - the use of correct units. |
| QWC2: Candidates will be expected to |
| - present work clearly, with words explaining process or steps |
| AND |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer |
| QWC1: Candidates will be expected to |
| - present work clearly, with words explaining process or steps |
| OR |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer | \& | QWC |
| :--- |
| 2 |
| 8 | \& | QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| :--- |
| QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR |
| Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar |

\hline
\end{tabular}

$\begin{gathered} \text { UNIT } 1 \\ \text { Higher Tier } \\ \hline \end{gathered}$	Mark	FINAL MARK SCHEME Comments
4. $\begin{aligned} & 8240 \\ & \hline 247.2(0) \\ & \hline 8487.2(0) \\ & 254.61(6) \\ & \hline \end{aligned}$ 8741.81(6) or 8741.82 OR 247.2(0) and 254.61(6) (£)501.82	B1 M1 A1 A1 4	For the evaluation of a correct 3% OR Sight of 1.03 (494.4 implies 2×247.2 and gains B1). For attempting to find 2 different 3%. OR 8240×1.03^{2}. F.T. one error. Must be given correct to the nearest penny. (£)501.81 is B1M1A1A0. Treat depreciation as a mis-read.
$\begin{aligned} & \text { 5. } \begin{array}{c} \text { (Area of square }=) \\ \text { (Area of circle }=) \\ 100 \pi \times 10^{2} \\ \left.\pi \times \mathrm{cm}^{2}\right) \\ \text { OR } 314 \text { to } 314 \cdot 3 \text { inclusive } \\ (\text { Percentage visible }=) \\ \frac{400-100 \pi}{400} \times 100 \\ \\ \end{array} \quad 21(\cdot 46 \ldots \%) \end{aligned}$	B1 M1 A1 M1 A1 5	Or consistent algebraic equivalent F.T. their two values for area. Accept answers between21(\%) and 22(\%) inclusive. Alternative consistent algebraic method
$\begin{aligned} & \text { 6. } \begin{aligned} &(£) 151.68 \equiv 120 \% \\ & \text { (Original cost) } \frac{151.68}{120} \times 100 \quad \text { or equivalent } \\ &=(\mathfrak{£}) 126.4(0) \end{aligned} \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \text { M1 } \\ \text { A1 } \\ 3 \end{gathered}$	Accept any indication.
7(a) (i) A comment that states or implies that we do not know the number of teenagers and number of 75 year olds considered. (ii) A comment that states or implies that we do not know the actual number of women nor the actual number of men (iii) A comment that states or implies that we do not know the percentage pass rate between 2005 and 2010. (b) Evidence of looking at values in Year 6. A statement that (£)400 is 40% of $(£) 1000$.	B1 B1 B1 B1 B1 5	Accept e.g. 'they might have looked at different numbers'. Accept e.g. 'there are no numbers on the frequency axis'. Accept e.g. 'they might have been different in 2007'. This may be implied e.g. sight of '(£)400 difference' or '(£)1300 AND (£) 1700'. 40% alone is B0. e.g. 'Its 40% in Year 6' gains B1B0.

UNIT 1 Higher Tier	Mark	FINAL MARK SCHEME Comments
8. $\begin{array}{r} 36 \times \frac{70}{42} \\ \times \frac{10}{15} \end{array}$ $=40 \text { (workers) }$	M1 M1 A1 3	Or equivalent. Or equivalent (the 36 must have been used). M1 for correctly using two of the operators ' $\times 70$ ', ' $\div 42$ ', ' $\times 10$ ' and ' $\div 15$ ' with the 36 . C.A.O. Do not penalise pre-approximations as long as 40 given as the final answer. Alternative presentation. $\frac{\text { Area }}{42} \quad \frac{\text { Time }}{10} \quad \frac{\text { Workers }}{36}$ Award M1 for correct step(s) to reach 70. Award M1 for correct step(s) to reach 15. $70 \quad 15 \quad \underline{40} \quad$ Al \quad C.A.O.
9. Correct substitution into formula. Using 16553(p) $\mathrm{U}=\frac{16553 / 1 \cdot 05-90 \times 31 \cdot 48}{11 \cdot 546} \quad \text { or equivalent }$	$\begin{gathered} \hline \text { M1 } \\ \mathrm{m} 1 \\ \mathrm{~m} 1 \\ \text { A1 } \\ 4 \end{gathered}$	Do not penalise using (£)165.53 at this stage. The two ' m ' marks may be awarded in either order. C.A.O. Accept answers of 1120 ± 1
10. Sight of 7005 (metres) Sight of 1523 (seconds) Sight of $1522 \cdot 5$ (seconds) or 25 min 22.5 sec Use of 'Distance' / 'Time' (Greatest av. Speed) $\frac{7005}{1522 \cdot 5}$ $=4.6\left(009 . \mathrm{ms}^{-1}\right)$	B1 B1 B1 M1 M1 A1 6	FT their conversion to seconds. 1522.5 implies $2^{\text {nd }} B 1$. F.T. 'their greatest distance' / 'their least time' only if 'greatest distance' > 7000 AND 'least time' < their 1523. Do not accept an answer unless the correct method has been shown. An answer of 4.6 found using values which are not their greatest distance and least time is M0A0.
11(a) (Angle subtended in the shaded sector $=$) $70\left({ }^{\circ}\right)$ Use of $\frac{70}{360} \times \pi \times 8^{2} \times 3$ $=117 \cdot 28(6 . .)\left(\mathrm{cm}^{2}\right) \text { or } 112 \pi / 3$	B1 M2 A1	May be implied by sight of 210° F.T. 'their 70°. M1 for $\frac{70}{760} \times \pi \times 8^{2} \quad$ A1 for $\left.39(.09 \ldots)\right)$ Allow answers between 117.2 to 117.4 inclusive. Do not penalise final answer of $117\left(\mathrm{~cm}^{2}\right)$ if previous permissible answer seen. Note: Using 50° instead of 70° giving a final answer of 83.7(7..) is B0, M2(on follow through), A1. BUT if candidates then use $\pi \times 8^{2}-83 \cdot 7(7 .)=.117 \cdot 3$, then all marks awarded.
$\text { (b) Use of } \begin{aligned} 360 & \times 2 \times \pi \times 8 \quad \text { OR sight of } 9 \cdot 77(\ldots) \\ & \times 3 \\ & +48 \\ & =77 \cdot 3(\ldots \mathrm{~cm}) \end{aligned}$	M1 m1 m1 A1 8	F.T. 'their 70° '. (Note: Use of 50° gives 6.98) Allow 77 (cm) .(Note: Use of 50° gives 68.9..) Mark their final answer.

UNIT 1 Higher Tier	Mark	FINAL MARK SCHEME Comments
Mark parts (a) and (b) together.		Take care that the length of the base of the pyramid $(10 \mathrm{~cm})$ is not confused with the height of the cone (also $10 \mathrm{~cm})$. If the height of the cone is found in part (a) then award the appropriate marks for this work in part (b).
12(a) Sight of $1 / 3 \times \pi \times r^{2} \times h_{1}$ AND $1 / 3 \times($ area of base $) \times h_{2}$	B1	For B1 allow unconventional use of notation and symbols as long as accurate intent is clear (e.g. h_{1} and h_{2} may both be given as ' h ' or 'height').
A clear intention to use $\mathrm{h}_{1}=2 \mathrm{~h}_{2}$ in the above.	B1	
$1 / 3 \times \pi \times 4^{2} \times 2 \mathrm{~h}=1 / 3 \times(\text { length })^{2} \times h$	M1	
$(\text { length })^{2}=32 \pi$	A1	Accept $100 \cdot 45$ to $100 \cdot 6$ inclusive.
$($ side length $=$) $10(\cdot 0 . . \mathrm{cm})$	A1	SC1 for an answer of 7(.08...cm) (using $\mathrm{h}_{1}=\mathrm{h}_{2}$). [Note $10(\mathrm{~cm})=$ height of cone for part (a) is MOAOAO (unless then used to find the length of the base of the pyramid) but will gain the M1m1A1 in part (b) and possibly go on to gain the final A1 in part (b)].
(b) $1 / 3 \times \pi \times 4^{2} \times($ cone height $)=335 \cdot 1 \div 2 \quad$ OR $1 / 3 \times 32 \pi \times($ pyramid height $)=335 \cdot 1 \div 2 \quad$ OR $1 / 3 \times \pi \times 4^{2} \times 2 l / 3+1 / 3 \times 32 \pi \times l / 3=335 \cdot 1$	M1	F.T. using ('their side length') ${ }^{2}$ for 32π. Or equivalent e.g. using ' $2 h$ ' and ' h ' (where $h=$ pyramid height).
$($ cone height $=) \frac{3 \times 167.55}{16 \pi} \quad$ or equivalent		
OR (pyramid height $=$) $\underline{3 \times 167.55}$ or equivalent	m1	
OR $\quad l=\frac{3 \times 3 \times 335 \cdot 1}{32 \pi+32 \pi}$ or equivalent		Do not penalise approximating 32π as 100 . (Pyramid height given as $5 \cdot 026$).
$($ cone height $=) 10(\mathrm{~cm})$ OR $($ pyramid height $=) 5(\mathrm{~cm})$	A1	OR $l=15$ is A2
Overall length $=15(\mathrm{~cm})$	$\begin{gathered} \text { A1 } \\ 9 \end{gathered}$	

UNIT 2 - FOUNDATION TIER

UNIT 2 (non calculator) Foundation Tier	Marks	FINAL MARK SCHEME Comments
1. (a) 12756 (km) (b) (i) 4670 (ii) 5000 (c) 1067 (d) 1,5,7,35 (e) 5 hundred OR 500	$\begin{gathered} \hline \text { B1 } \\ \text { B2 } \\ \\ \text { B1 } \\ 7 \end{gathered}$	B1 for 3 or 4 correct factors and no more than1 wrong factor Accept hundred(s)
$\begin{array}{lll}\text { 2. } & \mathrm{cm} & \text { centimetres } \\ \mathrm{km} & \text { kilometres } \\ \mathrm{g} & \text { grams } \\ & \mathrm{m}^{3} \text { or } 1 & \text { cubic metres or litres }\end{array}$	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	Accept kl
3. (a) 5 (p) (b)	$\begin{gathered} \hline \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 4 \end{gathered}$	Allow 7/10 and 2/10 to represent A and B respectively. Use overlay. A should be between 0.6 and 0.8 inclusive. B should be between 0.1 and 0.3 inclusive. C should be at 0 .
4. (a) $2 g$ (b) 11 (c) (i) $(x=) 4$ (ii) $(x=) 36$	$\begin{gathered} \hline \text { B1 } \\ \text { B2 } \\ \\ \text { B1 } \\ \text { B1 } \\ 5 \\ \hline \end{gathered}$	B1 for $7 \times 5-4 \times 6 \quad$ OR 35-24 OR $35-\ldots \quad$ OR ... - 24 OR sight of both 35 and (-)24 Accept embedded answers Accept embedded answers

UNIT 2 (non calculator) Foundation Tier		FINAL MARK SCHEME Comments
9. (a) $\begin{array}{rrrr}32 & 34 & 36 & 38 \\ 52 & 54 & 56 & 58\end{array}$	B2	B2 for 8 correct entries and no extra B1 for 8 correct entries and extra wrong values B1 for between 4 and 7 correct entries
(b) (i) $5 / 12$	B2	FT their list provided at least one number greater than 37 B1 for a numerator of 5 in a fraction less than 1 . B1 for a denominator of 12 in a fraction less than 1. Do not penalise incorrect reduction of fractions from a FT. NB Penalise -1 for use of words such as ' 5 out of 12 ', ' 5 in 12 '. or ' $5: 12$ '. When both fraction and wrong notation seen, DO NOT penalise wrong notation.
(b) (ii) 1 or 100%	B1	Accept 12/12 o.e.
(c) Yes and statement saying all numbers on the second (square) spinner are even	E1	Accept 'all the numbers in (a) are even' There must be reference to (a) OR the $2^{\text {nd }}$ spinner OR the units digits in their answers to (a)
	6	
10. $A \hat{C} D=90{ }^{\circ}$)	B1	Angles marked in correct places on diagram are awarded appropriate marks.
$A \hat{C} B=140\left({ }^{\circ}\right)-90\left({ }^{\circ}\right)=50\left({ }^{\circ}\right)$	B1	Accept method using sum of angles of a polygon. If $90\left({ }^{\circ}\right)$ was not seen, awarding the second B1 mark implies the first B1.
$C \hat{A} B=\left(180\left(^{\circ}\right)-70\left(^{\circ}\right)-50\left(^{\circ}\right)=60\left(^{\circ}\right)\right.$	B1	FT from 'their $A \hat{C} B$ '
OR converse explanation that, for the triangle $A B C$ to be isosceles, its 'base angles' need to be $55\left({ }^{\circ}\right)$		Be aware of alternative arguments e.g. showing that an isosceles triangle $A B C$ contradicts the condition that $A C D E$ is a rectangle.
Statement 'Since $A \hat{C} B \neq C \hat{A} B$ (or $D \hat{C} B \neq E \hat{A} B$) then $\mathrm{AB} \neq \mathrm{BC}$ ' or equivalent	E1	E1 is dependent on at least 2 B1 marks being awarded Accept 'triangle ABC is not isosceles' or 'diagram is not symmetrical' if B3

\begin{tabular}{|c|c|c|}
\hline UNIT 2 (non calculator) Foundation Tier \& \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
```
11. Method 1 (total profit \(=\) total selling price - total cost price)
(Money taken for full-price fruit cakes =) \(3 / 4 \times 20 \times(\mathfrak{f}) 6(=(£) 90)\)
(Money taken for reduced-price fruit cakes =) \(5 \times 0.7 \times(£) 6\)
(= (£)21)
\((\) Total money taken for chocolate cakes =) \(13 \times(\mathfrak{f}) 2+2 \times(\mathfrak{£}) 1\)
(= (£)28)
\((\) Total cost \(=) 20 \times(£) 3+15 \times(£) 1(=(£) 75)\)
\((\) Profit \(=)(\mathfrak{£})[90+21+28]-(\mathfrak{£}) 75\)
\(=(£) 64\)
``` \\
OR \\
Method 2 (total profit \(=\) fruit cake profit + chocolate cake profit) \\
(Full-price fruit cake profit \(=\)) \(3 / 4 \times 20 \times(£) 6-3 / 4 \times 20 \times(£) 3\) \\
OR \(3 / 4 \times 20 \times(£)(6-3) \quad(=(£) 45)\) \\
(Reduced-price fruit cake profit \(=\)) \(5 \times 0.7 \times(\mathfrak{£}) 6-5 \times(£) 3\) \\
OR \(5 \times(0.7 \times(\mathfrak{f}) 6-(\mathfrak{f}) 3) \quad(=(£) 6)\) \\
(Full-price chocolate cake profit \(=\)) \(13 \times(£) 2-13 \times(£) 1\) \\
OR \(13 \times(\mathfrak{f})(2-1) \quad(=(\mathfrak{f}) 13)\) \\
\((\) Reduced-price chocolate cake profit \(=0)\) \\
\((\) Total profit \(=)(\mathfrak{f})[45+6+13(+0)]\)
\[
=(£) 64
\]
\end{tabular} \& B1
B1
B1

B1
M1
A1
OR
B1
B2
B1
B1
B11
M1
A1

6 \& | Or equivalent e.g. (£) $0.60 \times 5 \times 7$. FT from 'their $3 / 4 \times 20$ ' |
| :--- |
| Consideration of ' $+2 \times(£) 1$ ' can be implicit |
| FT provided at least B2 awarded CAO |
| B1 for sight of $5 \times 0.7 \times(£) 6$ or $(£) 1.20$ |
| FT from 'their $3 / 4 \times 20$, |
| FT provided at least B2 |
| CAO |

\hline $$
\begin{array}{r}
12.6 x+10+145-2 x+4 x-15+3 x \\
=360\left({ }^{\circ}\right) \\
11 x=220\left({ }^{\circ}\right) \\
(x=) 20\left({ }^{\circ}\right)
\end{array}
$$ \& B1

M1
A1
A1

4 \& | Or equivalent statement for the sum of the 4 angles |
| :--- |
| Allow provided the sum of at least 3 of the given angles is equated to 360° |
| FT |
| FT $\mathrm{a} x=\mathrm{b}$ if $\mathrm{a} \neq 1$ |
| If M0, then allow SC1 and possible B1 for $40 / 11$ or $400 / 11$ (for 180° or 540°) |
| 4 marks for correct answer of 20° with no working or from trial and improvement method |

\hline | 13. (a) 0 |
| :--- |
| (b) At least 5 correct plots |
| All 7 points correctly plotted and joined with curve |
| (c) Line drawn correctly x-coordinate | \& B1

P1
C1
P1
B1

5 \& | Plots should be accurate to within one small square |
| :--- |
| FT 'their table'. C0 for a polygon |
| FT 'their curve' for point of intersection B1 does NOT imply P1 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
UNIT 2 \\
Higher Tier
\end{tabular} \& Mark \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
4.
\[
\begin{aligned}
\& A \hat{C} D=90\left(^{\circ}\right) \\
\& A \hat{C} B=140\left({ }^{\circ}\right)-90\left({ }^{\circ}\right)=50\left({ }^{\circ}\right)
\end{aligned}
\]
\[
C \hat{A} B=\left(180\left(^{\circ}\right)-70\left({ }^{\circ}\right)-50\left({ }^{\circ}\right)\right)=60\left(^{\circ}\right)
\] \\
OR converse explanation that, for the triangle \(A B C\) to be isosceles, its 'base angles' need to be \(55\left({ }^{\circ}\right)\) \\
Statement 'Since \(A \hat{C} B \neq C \hat{A} B\) (or \(D \hat{C} B \neq E \hat{A} B\)) \\
then \(\mathrm{AB} \neq \mathrm{BC}\) ' or equivalent
\end{tabular} \& B1
B1
B1

E1

4 \& | Angles marked in correct places on diagram are awarded appropriate marks. |
| :--- |
| Accept method using sum of angles of a polygon. If $90\left({ }^{\circ}\right)$ was not seen, awarding the second B1 mark implies the first B1. |
| FT from 'their $A \hat{C} B$, |
| Be aware of alternative arguments e.g. showing that an isosceles triangle $A B C$ contradicts the condition that $A C D E$ is a rectangle. |
| E1 is dependent on at least 2 B1 marks being awarded |
| Accept 'triangle ABC is not isosceles' or 'diagram is not symmetrical' if B3 |

\hline 5.

$$
\begin{aligned}
2 a+0 \cdot 4+3 a & =1 \text { OR } \quad(5 a=) 0 \cdot 6 \\
(a & =) 0 \cdot 6 / 5 \text { or } 0 \cdot 12 \\
\text { (Required probability } & =0.36
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
3 \\
\hline
\end{gathered}
$$

\] \& | Use of 'total probability $=1$ ' |
| :--- |
| If first 2 marks were M1A0, then FT $3 \times$ 'their a ', provided $3 a<1$. |

\hline | 6. (a) 0 and 9 |
| :--- |
| (b) At least 5 correct plots |
| All 7 points correctly plotted and joined with curve |
| (c) Line drawn correctly x-coordinate | \& | B2 |
| :---: |
| P1 |
| C1 |
| P1 |
| B1 |
| | \& | B1 for either correct |
| :--- |
| Plots should be accurate to within one small square |
| FT 'their table'. C0 for a polygon |
| FT 'their curve' for point of intersection |
| B1 does NOT imply P1 |

\hline 7. $y \geq-1$ or equivalent $y \leq 2 x$ \& \[
$$
\begin{gathered}
\mathrm{B} 1 \\
\text { B2 } \\
\\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { Accept ' }>\text { ', } \\
& \text { Accept ' }<\text { '. B1 for } y=2 x, y>2 x, y \geq 2 x \\
& \text { B1 for } y \leq k x(+0) \text {, with } k>0
\end{aligned}
$$
\]

\hline | 8. (a) Attempting to sum both totals, with at least one correct 128/200 (=64/100) or equivalent 0.64 |
| :--- |
| (b) Increase number of throws / Repeat process | \& \[

$$
\begin{gathered}
\hline \text { M1 } \\
\text { m1 } \\
\text { A1 } \\
\text { E1 } \\
4 \\
\hline
\end{gathered}
$$

\] \& | 128, 200 |
| :--- |
| FT from their totals provided one was correct C.A.O. |
| Any convincing suggestion |

\hline 9.

$$
\begin{aligned}
5 x-1-2 x & =1 \\
3 x & =2 \\
x & =2 / 3 \text { or equivalent }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { B1 } \\
3
\end{gathered}
$$

\] \& | Clearing fractions. FT until $2^{\text {nd }}$ error. Collecting terms. |
| :--- |
| FT $a x=b$, with $a \neq 1$ |

\hline \[
10. $$
\begin{array}{ll}
\left(2 \times 10^{27}\right) \quad\left(5 \times 10^{24}\right) \\
\left(2 \times 10^{27}\right) \div\left(5 \times 10^{24}\right) \\
400 \text { or } 4 \times 10^{2}
\end{array}
$$

\] \& | B1 |
| :---: |
| M1 |
| A1 |
| |
| 3 | \& | Suitable rounding of both numbers Correct division attempted. |
| :--- |
| FT their rounded numbers. Allow 0.4×10^{3}. ISW An answer of 2.5×10^{-3} implies the B1 only. |

\hline | 11. $2 \mathrm{k}+3 \mathrm{p}=2.05$ and $3 \mathrm{k}+5 \mathrm{p}=3.20$ |
| :--- |
| (or $2 \mathrm{k}+3 \mathrm{p}=205$ and $3 \mathrm{k}+5 \mathrm{p}=320$) |
| Method to find the first variable |
| Correct first variable |
| Method to find the second variable |
| Correct second variable | \& S1

M1
A1
m1
A1

5 \& | Strategy of forming a pair of equations. (Do not penalise for not defining variables.) |
| :--- |
| Allow one slip. |
| Do NOT accept a trial and improvement method. |
| FT their first variable. $\mathrm{k}=(\mathfrak{f}) 0.65 \text { or } 65(\mathrm{p}), \mathrm{p}=(\mathfrak{f}) 0.25 \text { or } 25(\mathrm{p})$ |
| If incorrect units are given, penalise -1 once only. |

\hline | 12. Angle $\mathrm{BOD}=156^{\circ}$ |
| :--- |
| Angle at the centre is twice the angle at the circumference |
| Angle BCD $=24^{\circ}$ |
| Tangent and radius are perpendicular (and angle sum of quadrilateral is 360°) | \& B1

E1
B1
E1

4 \& | Accept correct alternative methods. Check for answers on diagram. |
| :--- |
| Angle sum of quadrilateral alone is insufficient |

\hline
\end{tabular}

| UNIT 2 Higher Tier | Mark | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| 13. $6 \mathrm{p}+\mathrm{pq}=5-\mathrm{t}$ $\begin{aligned} \mathrm{p}(6+\mathrm{q}) & =5-\mathrm{t} \\ \mathrm{p} & =\frac{5-\mathrm{t}}{6+\mathrm{q}} \quad \text { or equivalent } \end{aligned}$ | $\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \hline \end{gathered}$ | Collecting terms. FT until $2^{\text {nd }}$ error (for equivalent difficulty).
 Factorising
 Quotient
 Mark final answer. |
| 14. (a) $1 / 4$ or 0.25
 (b) $x=0.004444 \ldots . . \quad 10 x=0.04444 \ldots .$. with an attempt to subtract $4 / 900$ or $2 / 450$ or $1 / 225$ or equivalent
 (c) $\begin{aligned} & 16+4 \sqrt{ } 3+4 \sqrt{ } 3+3 \\ & 19+8 \sqrt{3} \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$ | B1 for 4^{-1} or $1 / 2^{2}$ or $1 / 3 \sqrt{64}$ or $1 / 64^{1 / 3}$ or $(1 / 64)^{1 / 3}$
 Or $10 x$ and $100 x$, or equivalent. Or an alternative method.
 An answer of 0.04/9 gains M1 only.
 Mark final answer. Do not ignore incorrect cancelling.
 3 of the 4 terms correct
 Do not ignore subsequent working |
| 15. $4 / 8 \times 3 / 7 \times 2 / 6$ $\begin{gathered} 4 / 8 \times 3 / 7 \times 2 / 6 \times 2 \quad \text { or } \quad 4 / 8 \times 3 / 7 \times 2 / 6+4 / 8 \times 3 / 7 \times 2 / 6 \\ 48 / 336(=1 / 7) \end{gathered}$ | B1
 M1
 A1
 3 | Do not ignore incorrect cancelling
 If no other marks awarded, SC1 for method 'with replacement' $4 / 8 \times 4 / 8 \times 4 / 8 \times 2$
 or $4 / 8 \times 4 / 8 \times 4 / 8+4 / 8 \times 4 / 8 \times 4 / 8 \quad(=1 / 4)$ |
| 16. Inverted curve (no vertical or horizontal stretch) with vertex at the origin Vertical translation down
 Point $(0,-3)$ indicated in relation to $2^{\text {nd }}$ curve. | B1 B1 B1 3 | Clear intention FT their curve Accept -3 indicated on y-axis |

| UNIT 3 (calculator allowed) Foundation Tier | Mark | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| $\begin{array}{cc} \hline \text { 1. (a) } & 6(.00) \\ 3.69 \\ 4(.00) \\ & 13.69 \end{array}$
 (b) 2 (rolls)
 (c) $11.98 \div 2$ or equivalent (£) 5.99 ISW | $\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 7 \\ \hline \end{gathered}$ | FT candidate's values for at least one B1. FT candidate's total. |
| 2. (a) 57
 (b) 57.4 | $\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ 2 \end{gathered}$ | |
| 3. (a) 1250 (millilitres)
 (b) 1 (litre)
 (c) $250 \div 80$
 3 full cups | B1 B2
 M1
 A1
 5 | B1 for sight of $1000(\mathrm{ml})$ as final answer or in working If units are given they must be correct. 1000 litres without working gets B0 FT their volume from (a) Amount left over, if given, must be correct for A1 e.g. 3.125 with no working gets M1 A0.
 3 cups 10 ml left over gets M1 A1. |
| 4. (a) Evidence of counting squares 35-38 (square metres)
 (b) 20 (m) | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \hline \end{gathered}$ | |
| 5. (a) 31.36
 (b) 1024
 (c) 5.3 | $\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \\ \hline \end{gathered}$ | |
| 6.(Cost of individual tickets=) $2 \times 4.95(£ 9.90)+3 \times 4.60(£ 13.80)$ $=(\mathfrak{f}) 23.7(0)$
 $($ Saving $=23.7-14.5=)(£) 9.2(0)$
 Look for
 - Spelling
 - Clarity of text explanations,
 - Consistent use of $£$ or p signs.
 - Consistent use of mathematical symbols.
 QWC2: Candidates will be expected to
 - Present work clearly, with words explaining process and steps
 AND
 - Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer.
 QWC1 : Candidates will be expected to
 - Present work clearly, with words explaining process or steps
 OR
 - Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer. | M1
 A1
 A1
 QWC2 | FT "their (£) 23.7(0)" - (£)14.5(0)
 QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
 QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar.
 OR
 Evident weakness in organisation of material but using acceptable mathematical form, with few, if any, errors in spelling, punctuation and grammar.
 QWC0 Evident weakness in organisation of material, and errors in use of mathematical form, spelling, punctuation and grammar. |

| UNIT 3 (calculator allowed) Foundation Tier | Mark | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| 7. S and Q | $\begin{gathered} \hline \text { B2 } \\ 2 \end{gathered}$ | B1 for at least one correct answer and no more than one incorrect answer. |
| 8. (a) 13
 (b) 7 | $\begin{gathered} \text { B1 } \\ \text { B1 } \\ 2 \end{gathered}$ | Accept embedded answers |
| 9. (a) April
 (b) $11\left({ }^{\circ} \mathrm{C}\right)$
 (c) $100(\mathrm{~mm})$
 (d) Spring, Summer, Autumn, Winter indicated along one axis AND vertical axis correctly labelled
 Uniform scale for frequency axis starting at 0 Four bars at correct heights | B1
 B1
 B1
 B1
 B2
 6 | Or indicated on the bars themselves.
 B1 for at least 2 correct bars, consistent with their scale. Bars must be of equal width. |
| 10. (a) $12 \times 5-5 \times 3-3 \times 2$ (= $60-15-6)$
 (b) Strategy to explore possible combinations.
 $18 \times 5=9090-3=87$ so 18 correct answers (with one incorrect answer).
 The mark drops to 85 from 87 so the 20th question scores -2 , (so the last question was not answered). | M1 A1 S1 B1 B1 5 | Sight of two of $60,-15,-6$ and an attempt to combine marks gets M1
 39 alone get 2 marks.
 Evidence of trial and improvement or correct answer gets S1.
 Sc2 for correct answer with no working
 Correct calculations infer correct answer |
| 11. First arc(s) crossing the given line.
 Final arc and line with angle of 60° at the point X | B1
 B1
 2 | Arc must be big enough for the second arc to cut it. B2 for correct construction at X Allow $\pm 2^{\circ}$. If no $\operatorname{arc}(\mathrm{s}) \mathrm{B} 0 \mathrm{~B} 0$.
 Arc must be big enough for the second arc to cut it. B1 maximum for a correct construction elsewhere on the line. |
| 12. (a) 5 (miles)
 (b) 30 (mins)
 (c) Reference to decrease in steepness, gradient or equivalent after horizontal section.
 (d) A horizontal line stopping at the point $(14: 00,7)$
 Point at $(16: 12,12)$
 Points joined with straight lines. | B1
 B1
 E1
 B1
 B1
 B1
 6 | Accept half an hour
 Ignore calculations. Explanation should refer to gradient, slope or steepness or any other evidence from the graph.
 B1 for a horizontal line that continues past $(14: 00,7)$ so long as no other line is drawn.
 FT their points, provided one point correct and walk finishes at 12 miles. |
| 13. (a) Method of finding the number of whole blocks that fit in length, width and height. $9 \times 5 \times 4$ $180 \text { (blocks) }$
 (b) $1600-400$ $\div 60$
 20 (blocks) | $\begin{gathered} \hline \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ 6 \end{gathered}$ | May be implied by sight of two of 9,5 or 4
 Multiplication of three values, at least two correct C.A.O.
 SC1 for $26910 \div 125$ or 215.28 or 215
 C.A.O |

| UNIT 3 (calculator allowed) Foundation Tier | Mark | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| 14. (a) $\begin{aligned} 57 & =4 \times 3+5 \mathrm{C} \\ 5 \mathrm{C} & =45 \\ \mathrm{C} & =9 \end{aligned}$
 (b) $\begin{aligned} & 6 x-2 x=12+19 \\ & 4 x=31 \\ & \quad x=7.75 \text { or } 73 / 4 \end{aligned}$ | B1
 B1
 B1
 B1
 B1
 B1
 6 | Correct substitution. FT until second error.
 Isolating the C .
 FT if $a \mathrm{C}=b$ and $a \neq 1$.
 Accept embedded answer.
 FT until $2^{\text {nd }}$ error.
 Accept embedded answer.
 Mark final answer. Accept improper fractions provided they are in simplest form. |
| $15 \quad 2,5,5,6,7 \quad$ or $3,4,5,5,8$ Median of 5.
 At least two 5s entered with no other number occurring more times.
 Difference of 5 between the highest and lowest numbers. The total of the 5 numbers being 25 , provided not all 5 s . | $\begin{aligned} & \text { B1 } \\ & 4 \\ & \hline \end{aligned}$ | Use of 2 digit numbers, mark as a misread. |
| 16.(a) (Each share $=£) 5700 \div(1+2+3)(=£ 950)$
 (Alan receives $£ 3 \times 950=£$) 2850,
 (Ben receives $£ 2 \times 950=$) 1900 and
 (Carwyn receives £) 950.
 (b) $5700 \div 3=1900$ OR Ben gets the same fraction $(2 / 6=1 / 3)$ No (it does not affect the amount Ben receives). | M1
 A2
 B1
 E1
 5 | FT 'their 950' for A1 if all amounts correct.
 A1 for any 2 correct amounts.
 A1 for no labels or incorrect labels.
 Do not award E1 if B1 not awarded. FT Ben's share from (a). |
| 17. (a) All points plotted correctly.
 (b) Negative correlation OR "As engine size increases the distance travelled on one litre decreases". | B2
 E1 3 | B1 for 3, 4 or 5 points plotted, not joined or. B1 for all points plotted correctly but joined. The word correlation is needed if the first answer used. Accept inverse relationship. |
| 18. Sketch of circle of correct radius drawn. | B2
 2 | Allow freehand sketch. Use overlay. ($\pm 5 \mathrm{~mm}$)
 B1 for intention of sketching the correct circle using points, or arcs, OR
 B1 for intention of correct circle but outside the tolerance.
 Ignore other lines on the diagram drawn to find the centre of the circle.
 Penalise -1 for other loci drawn that are not intended to find the centre of the circle. |
| 19. $1 / 2 \times 5 \times 8 \times 14$ $280 \mathrm{~cm}^{3}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { U1 } \\ 3 \end{gathered}$ | |
| 20. Interior Angle of Hexagon $((6-2) \times 180) \div 6$
 $120\left({ }^{\circ}\right)$ $\begin{gathered} (x=(180-120) / 2=) \text { or }(x=120-90=) \text { or }(x=120 \div 4=) \\ 30\left(^{\circ}\right) \end{gathered}$ | M1
 A1
 B1
 3 | Or 180 - ($360 \div 6$) Or $360 \div 3$ Or 60×2 Working may be implied from diagram.
 FT "their 120° "
 B1 requires evidence of an appropriate method used |

| Unit 3
 Higher Tier | | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| 1. (a) $4 y(3+5 y)$
 (b) 105
 (c) $4 x=20 \times 5$ OR $\frac{x}{5}=\frac{20}{4}$ $x=25$
 (d) $6 x-2 x=12+19$
 $4 x=31$ $x=7.75 \text { or } 73 / 4$ | B2
 B2
 M1
 A1
 B1
 B1
 B1 | B1 for $4 y(3 \ldots$.$) or 4 y(\ldots . .+5 y)$ or correct partial factorisation.
 B1 for answer of 15 OR B1 for adding 45 to their first term or for sight of +45 .
 FT until $2^{\text {nd }}$ error.
 Mark final answer. Accept improper fractions provided they are written in simplest form.
 Accept embedded answers. |
| 2. (a) All points plotted correctly.
 (b) Negative correlation OR "As engine size increases the distance travelled on one litre decreases".
 (c) Appropriate straight line of best fit drawn through $(1.8,8.6)$, with some values above and below the line.
 (d) From their line of best fit ± 0.1 (km) | B2
 E1
 B2
 B1
 6 | B1 for 3, 4 or 5 points plotted correctly, not joined, or B1 for all points plotted correctly but joined.
 The word correlation is needed if the first answer used. Accept inverse relationship.
 B1 for unreasonable line of best fit drawn through $(1.8,8.6)$ B1 for reasonable line of best fit but not drawn through (1.8, 8.6).
 If no line of best fit, accept answer of 9.4 to 9.6 inclusive. |
| $\begin{aligned} 3.90 \div \text { time } & \\ & \\ & =30 \div 2.5(\mathrm{mph}) \end{aligned}$ | $\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 3 \end{gathered}$ | Accept $90 \div 2.3$ for B1 only |
| 4. $2,5,5,6,7$ or $3,4,5,5,8$
 Median of 5 .
 At least two 5s entered with no other number occurring more times.
 Difference of 5 between the highest and lowest numbers. The total of the 5 numbers being 25 , provided not all 5 s | $\begin{aligned} & \text { B1 } \\ & 4 \\ & \hline \end{aligned}$ | Use of 2 digit numbers, mark as a misread. |
| 5. (a) $($ Each share $=£) 5700 \div(1+2+3)(=£ 950)$
 (Alan receives $£ 3 \times 950=£$) 2850 ,
 (Ben receives $£ 2 \times 950=\mathfrak{f}) 1900$ and
 (Carwyn receives £) 950 .
 QWC:
 Look for
 - units $£$
 - spelling in at least 1 statement/sentence
 - clarity of text explanations
 QWC2: Candidates will be expected to
 - present work clearly, with words or quantities shown for clarity of process or steps
 AND
 - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer
 QWC1: Candidates will be expected to
 - present work clearly, with words or quantities shown for clarity of process or steps
 OR
 - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer.
 (b) $5700 \div 3=1900$ OR Ben gets the same fraction $(2 / 6=1 / 3)$ No (it does not affect the amount Ben receives). | QWC
 2
 B1
 E1
 7 | FT 'their 950' for A1 if all amounts correct.
 A1 for any 2 correct amounts.
 A1 for no labels or incorrect labels.
 QWC2 Presents material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
 QWC1 Presents material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
 OR
 evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
 QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
 Do not award E1 if B1 not awarded.
 FT Ben's share from (a). |

| Unit 3 Higher Tier | | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| 6. Sketch of circle of correct radius drawn. | B2 | Allow freehand sketch. Use overlay. ($\pm 5 \mathrm{~mm}$)
 B1 for intention of sketching the correct circle using points, or arcs, OR
 B1 for intention of correct circle but outside the tolerance. Ignore other lines on the diagram drawn to find the centre of the circle.
 Penalise -1 for other loci drawn that are not intended to find the centre of the circle. |
| 7. $1 / 2 \times 5 \times 8 \times 14$ ${ }^{280} \mathrm{~cm}^{3}$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { U1 } \\ 3 \\ \hline \end{gathered}$ | Independent of other marks. |
| 8. (a) $((6-2) \times 180) \div 6$ $120\left(^{\circ}\right)$
 (b) (Angle at bottom of triangle $=120-90=) 30^{\circ}$ $(180-30) / 2$ $75\left(^{\circ}\right)$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \\ \hline \end{gathered}$ | OR 180 - ($360 \div 6$) OR $360 \div 3$ OR 60×2
 May be indicated on the diagram. FT 'their 120' - 90 . FT 'their 120 ' -90 . |
| 9. Strategy of multiplying h by $(h+2)$ either numerically or algebraically towards an answer of 70 or equivalent. | S1 | |
| One correct evaluation $7 \leq h \leq 8$ | B1 | $\begin{array}{llll} \frac{h}{7} & \frac{h \times(h+2)}{63} & \frac{h}{4} & \frac{h \times(h+2)}{68.7225} \end{array}$ |
| 2 correct evaluations $7.35 \leq h \leq 7.55$ one either side of 70 | B1 | $\begin{array}{llll}8 & 80 & 7.36 & 68.8896\end{array}$ |
| | | $\begin{array}{llll}7.1 & 64.61 & 7.37 & 69.0569\end{array}$ |
| 2 correct evaluations $7.35 \leq h \leq 7.45$ one either side of 70 | M1 | $\begin{array}{llll}7.2 & 66.24 & 7.38 & 69.2244\end{array}$ |
| | | $\begin{array}{llll}7.3 & 67.89 & 7.39 & 69.3921\end{array}$ |
| If evaluations not seen, accept 'too high' or 'too low'. | | $\begin{array}{llll}7.4 & 69.56 & 7.41 & 69.7281\end{array}$ |
| | | $\begin{array}{llll}7.5 & 71.25 & 7.42 & 69.8964\end{array}$ |
| $h=7.4$ | A1 | $\begin{array}{llll}7.6 & 72.96 & 7.43 & 70.0649\end{array}$ |
| | | $\begin{array}{llll}7.7 & 74.69 & 7.44 & 70.2336\end{array}$ |
| | | $\begin{array}{llll}7.8 & 76.44 & 7.45 & 70.4025\end{array}$ |
| | | $7.9 \quad 78.21$ |
| | 5 | |
| 10. (a) $(8 \div 5) \times 7$ or $7 \div(5 \div 8)$
 11.2 (cm) | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | Accept 11 from correct working. |
| (b) $20 \div(8 \div 5)$ or $20 \times(5 \div 8)$ | M1 | Accept 13 from correct working. |
| $12.5(\mathrm{~cm})$ | A1 4 | |
| 11. a) $0.02+0.3$ or 0.32 or equivalent 3.2×10^{-1} | M1 | FT with incorrect place value provided conversion attempted. |
| b) Correct conversion to common units. | B1 | |
| $20,000 \div 1.25$ or $2,000,000 \div 125(=16000$ or equivalent $)$ | M1 | |
| 1.6×10^{4} | A1 5 | |
| 12. $\tan (\mathrm{RPQ})=45 / 80 \quad$ OR $\quad \tan (\mathrm{PRQ})=80 / 45$ | M1 | A1 for $\tan ^{-1}(45 / 80(=0.5625))$ or $\tan ^{-1}(80 / 45(=1.77 \ldots))$
 FT from incorrect trigonometry AND
 FT 'their angles' obtained from premature rounding. |
| $29\left(.35 \ldots{ }^{\circ}\right)$ OR $60.6\left(42 \ldots{ }^{\circ}\right)$ or 61. | A2 | |
| (Bearing =) 029(.35... $)$ | B1 | |
| | 4 | |
| 13. a) Interquartile range: Readings from cf's of 15 and 45 $(50 \text { to } 52)-(24 \text { to } 25)$ | M1 | |
| $=25$ to 28 inclusive | A1 | SC1 for Kevin's IQR of 24 to 26 inclusive. |
| b) Valid reason e.g 'Kevin's median is higher than Sunil's', 'Kevin's graph is to the right of Sunil's' | E1 | Accept sight of medians for both cricketers (36 and 60). |
| Kevin | B1
 4 | Provided E1 awarded. Penalise -1 if incorrect medians are quoted. |
| | B1 | |
| $4.9=\mathrm{k} \times 1^{2}$ | M1 | |
| d=4.9t ${ }^{2}$ | A1 | Maybe implied by responses to (b). |
| b) $\mathrm{d}=19.6$ (when $\mathrm{t}=2)$ | B1 | FT from their non-linear (a). |
| $\mathrm{t}^{2}=28.2 / 4.9(=5.755 \ldots) \quad$ or $\quad(\mathrm{t}=) \sqrt{ }(28.2 / 4.9)$ | M1 | |
| $\mathrm{t}=2.39(89 \ldots)$ or $2.4(0)$ | A1 | |

| Unit 3
 Higher Tier | | FINAL MARK SCHEME Comments |
| :---: | :---: | :---: |
| 15. a) i)Correct expansion of both brackets $x^{2}+4 x+4+3 x+3-11$ $\left(\Rightarrow x^{2}+7 x-4\right.$ | M1 A1 | |
| ii) $(x=) \frac{-7 \pm \sqrt{ }\left(7^{2}-4 \times 1 \times(-4)\right)}{2 \times 1}$ | M1 | Use of formula, allow one slip in substitution. |
| $(x=) \frac{-7 \pm \sqrt{65}}{2}$ | A1 | CAO. |
| $(x=) 0.53$ and -7.53 | A1 | CAO. Must be correct to 2 decimal places. |
| b) $(5 x-3)(x+5)$ | B2 | B1 for ($5 x \ldots 3$)($x \ldots 5$). |
| $x=3 / 5$ or $x=-5$ | $\begin{gathered} \text { B1 } \\ 8 \end{gathered}$ | FT for their pair of brackets provided at least one bracket is of form (ax...). Must come from factorising. |
| 16. a) Cosine curve starting at 1 on the y axis | M1 | |
| Maximum and minimum points at $(0,1),(180,-1)$ and $(360,1)$ | A1 | |
| b) $113.578 \ldots\left({ }^{\circ}\right.$) | B1 | Accept rounded or truncated answers for both B1's. |
| 246.42... ${ }^{\circ}$) with no other angles given. | $\begin{gathered} \mathrm{B} 1 \\ 4 \end{gathered}$ | FT 360 - their first angle. |
| 17. a) Frequencies: $14,15,21,29,46$ | B2 | B1 for 2, 3 or 4 correct frequencies. |
| b) $14+0.4 \times 15$ or equivalent | M1 | FT 'their 14 ' and 'their 15 ' provided not 0.7 and 1.5 . |
| 20 | $\begin{gathered} \mathrm{A} 1 \\ 4 \end{gathered}$ | |
| 18. Overall strategy e.g. cosine rule \& $1 / 2 \mathrm{absinC}$ | S1 | |
| $\mathrm{AC}^{2}=9.9^{2}+7.2^{2}-2 \times 9.9 \times 7.2 \times \cos 75$ | M1 | |
| $\mathrm{AC}^{2}=112.95 \ldots$ | A1 | |
| $\mathrm{AC}=10.6(279 \ldots)$ | A1 | FT provided M1 awarded. |
| Area $\mathrm{ABC}=1 / 2 \times 9.9 \times 7.2 \times \sin 75(=34.425 \ldots)$ | M1 | |
| Area $\mathrm{ADC}=1 / 2 \times \mathrm{AC} \times 4.9 \times \sin 24(=10.590 \ldots)$ | M1 | FT their AC but not for 9.9, 7.2 or 4.9. |
| Area quadrilateral $=23.8\left(348 \ldots \mathrm{~cm}^{2}\right)$ | A1 7 | Accept answers in the range 23.8 to 23.9 .
 FT if one of the last M1 marks awarded, and their calculations are accurate to 1 d.p. |

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

