Surname

Centre Number

Other Names

GCSE LINKED PAIR PILOT

4363/02

METHODS OF MATHEMATICS UNIT 1: Methods (Non-Calculator) HIGHER TIER

A.M. FRIDAY, 10 January 2014

2 hours

CALCULATORS ARE NOT TO BE USED FOR THIS PAPER

ADDITIONAL MATERIALS

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

Take π as 3.14.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 2(a).

For Ex	For Examiner's use only					
Question	Maximum Mark	Mark Awarded				
1.	5					
2.	8					
3.	6					
4.	5					
5.	8					
6.	6					
7.	5					
8.	7					
9.	3					
10.	5					
11.	5					
12.	8					
13.	5					
14.	7					
15.	3					
16.	7					
17.	7					
Total	100					

Formula List

Area of trapezium =
$$\frac{1}{2}(a+b)h$$

Volume of prism = area of cross-section × length

Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone $=\pi r l$

In any triangle ABC

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ Area of triangle $= \frac{1}{2}ab \sin C$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$

where $a \neq 0$ are given by

(a)	Given that $a = -3$, $b = -5$ and $c = 2$, find the value of $\frac{6c - 2b}{a^2 + 2}$.	[2]
(b)	Simplify $32x - 16y - 50x - 17y$.	[2]
(C)	Simplify $\frac{(2x+7)^4}{2x+7}$.	[1]

Turn over.

	Fraction	Decimal	Is this a recurring or terminating decimal?	
	$\frac{2}{3}$	0.6	recurring	
		0.15		
	7 11			
כ) Expres	$\frac{0.24 \times 0.03}{0.002}$	as an improper	raction in its simplest form.	[3]
b) Expres	$\frac{0.24 \times 0.03}{0.002}$	as an improper t	raction in its simplest form.	[3]
b) Expres	$s \frac{0.24 \times 0.03}{0.002}$	as an improper t	raction in its simplest form.	[3]
b) Expres	$s \frac{0.24 \times 0.03}{0.002}$	as an improper t	raction in its simplest form.	[3]

© WJEC CBAC Ltd.

(4363-02)

Turn over.

.....

5. The universal set, $\varepsilon = \{22, 23, 24, 25, 26, 27, 28, 29, 30\}$.

Within this universal set ε ,

- set A is the multiples of 2
- set *B* is the multiples of 4
- set C is the multiples of 5
- (a) Complete the Venn diagram.

[3]

Examiner only

(b) Which one of the following Venn diagrams could also be used to represent the sets ε, A, B and C?
 You must give a reason for your choice. [2]

Examiner only

A biased dice is thrown. 6.

The letter 'o' is recorded when an odd number is thrown. The letter 'e' is recorded when an even number is thrown.

The dice is thrown in groups of ten throws.

Odd and even numbers recorded	00000	00000	eeeeo	ooooe	0000e
in each group	ooeee	eeeoo	00000	eeeee	eeeee

Calculate the relative frequency of throwing an odd number after 10, 20, 30, 40, and 50 (a) throws. [3]

Use your answers to complete the table below.

Total number of throws		10	20	30	40	50
Relative frequency of throwing an odd number	Fraction	7 10				
	Decimal	0.7				

(b) Use the graph paper to plot the relative frequencies.

0.8 0.7 0.6 0.5 0.4 20 10 30 40 50 0 Number of throws

Relative frequency

Examiner only

[2]

(c) Has the experiment been carried out a sufficient number of times to give a good estime for the probability of throwing an odd number with this biased dice? You must give a reason for your answer.	[1]
Four of the interior angles of a seven-sided polygon are 114°, 150°, 160° and 170°. The other three interior angles of this polygon are equal. Calculate the size of each of the other three interior angles.	[5]
	······

7.

8.	(a)	Find the highest common factor of 36 and 54.	[1]	Examiner only
	(b)	Simplify $\sqrt{(2^4 \times \sqrt{81})}$.	[3]	
	·····			
	(C)	 Use these clues to find the missing number. This number is the product of 3 prime numbers 10 is a factor of this number 210 is a multiple of this number This number is greater than 30 	[3]	
		The missing number is		

Examiner only The *n*th term of a sequence is $5n^2 - 3n - 1$. Calculate the 40th term of the sequence. 10. (a) [2] The diagram shows the first four patterns of a sequence. (b) Find the *n*th term of the sequence. [3]

(4363-02)

(a)	Factorise $6x^2 + 13x - 5$.	[2]	Examin only
(b,	Rearrange to make <i>m</i> the subject of the following formula. $w = \frac{3m^2}{d}$	[3]	
(C,) Rearrange to make <i>b</i> the subject of the following formula. ab = bc + e	[3]	
·····			

Examiner only **13.** In a group of 15 people there are 5 men and 10 women. One of the men and three of the women are wearing red jumpers. A man is selected at random from the group. Then a woman is selected at random from the group. Is the probability that the people selected are both wearing red jumpers greater or less than 5%? You must show your working and give a reason for your answer. [5]

(a)	Simplify $(3x + 7y)(2x - 3x) = -2x + 7y(2x - 3x)(2x - 3x) = -2x + 7y(2x + 7x) = -2x + 7y(2x + 7x) = -2x +$	(-5y) + xy.	[3]
(b)	Express $\frac{7x}{2} + \frac{2}{2}$	$\frac{2}{2}$ as a single fraction in its simplest form.	[4]
	2x+3 3x	-2 -2 -2	

15.	Two of the equat	ions below represent s	straight lines that are p	erpendicular to each other.	
		4y = x	4y = 3x	3y = x	
		y = x	-4y = x	y = -4x	
	Select the two ed You must show b	quations that represen by calculation that the e	t lines that are perpend equations represent pe	dicular to each other. erpendicular lines. [3]	

Turn over.

Examiner only

16. Two circles of equal radius intersect as shown in the diagram below.

Diagram not drawn to scale

The centres of the circles are *A* and *B*.

The straight lines *WXY* and *YZ* are tangents to the circle with centre A and $\overrightarrow{GFH} = 80^{\circ}$.

Examiner only Indicate on one of the lines on the diagram on the previous page, where the point *P* lies, so that YP = YX. (a) [1] Explain why XA is parallel to WB. (b) [2] Given that a straight line drawn between the centres of the two circles bisects HBG, calculate the size of XAB. You must give reasons for your answer. [4] (C)

(a)	The expression $x^2 + 8x + 5$ can be written in the form $(x + a)^2 + b$, where <i>a</i> and <i>b</i> whole numbers. Find the values of <i>a</i> and <i>b</i> .	are [3]
······		
(b)	Hence , solve $x^2 + 8x + 5 = 0$ leaving your answer in surd form.	[4]
		1

END OF PAPER

BLANK PAGE