шјес

 cbac
GCSE MARKING SCHEME

MATHEMATICS - UNITISED

NOVEMBER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2014 examination in GCSE MATHEMATICS - UNITISED. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised \\
Unit 1 Foundation Tier November 2014
\end{tabular} \& Mark \& Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
1(a) January December February November March \\
(b) \\
3 \\
(c) \\
\(15\left({ }^{\circ} \mathrm{C}\right)\) \\
(d) \\
\(-2\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
4 \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
Accept any unambiguous indication of correct order including \(-8,-5,-2,3,7\). \\
Do not accept a list of months. \\
Allow \(-15\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
2. \\
Horizontal line 11 cm long. \\
Circle with radius 4 cm . \\
Midpoint unambiguously identified. \\
Line drawn at an angle of \(70^{\circ}\) as per sketch.
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
4
\end{tabular} \& \begin{tabular}{l}
Allow lengths to be \(\pm 2 \mathrm{~mm}\) and angle \(\pm 2^{\circ}\). \\
Accept intent to be horizontal. \\
Do not accept 'free hand' drawing. \\
F.T. their line length. \\
If all four marks gained but logo not as intended (e.g. centre of circle not at identified midpoint), penalise -1 .
\end{tabular} \\
\hline \begin{tabular}{lcccc}
3. \& Finding \((0.9) \quad 0 \cdot 82\) and 0.75 \\
OR \& \(90 \%\) \& \((82 \%)\) and \(75 \%\) \\
OR \& \(90 / 100 \quad 82 / 100\) and \(75 / 100\) or equivalent. \\
OR \& three correct calculations for a common amount. \\
\multicolumn{4}{c}{ AND stating 'NO'. }
\end{tabular} \& B3 \& \begin{tabular}{l}
All correct decimals, OR all correct \(\%\), OR all correct fractions with common denominator, OR correct work using a common amount for sales made, OR a valid combination \\
AND stating 'NO'. (The 'NO' must follow from a correct reason). \\
B2 for the above BUT with 'NO' not stated or stated for an incorrect reason. \\
B1 for having only two correct values that may be compared (with or without a statement). \\
Ignore subsequent working if marks gained.
\end{tabular} \\
\hline \begin{tabular}{l}
4(a)
\[
28
\] \\
(b)
\[
70
\]
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \\
\hline (c) Scotland \(\dagger\) (\(\dagger\) ¢ \(\dagger\) 田 \& B1 \& 7 symbols. Ignore poor drawings. \\
\hline \[
\begin{aligned}
\& \text { England } \\
\& \text { Ireland and Wales } \quad \boxplus \boxtimes \text { or equivalent. }
\end{aligned}
\] \& B1

4 \& | 1 full symbol plus $3 / 4$ of the symbol. F.T. their answer to (b), provided it is of equal difficulty, correct to the nearest 10 . |
| :--- |
| Penalise contiguous or disjointed symbol -1 , once only. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised \\
Unit 1 Foundation Tier November 2014
\end{tabular} \& Mark \& Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
5. (Rented out first year \(=\)) \(3 / 4 \times 60\)
\[
=45
\] \\
(Rent collected first year \(45 \times(£) 150=\)) (£)6750 \\
(Rented out second year \(=\)) \(0.8 \times 60\)
\[
=48
\] \\
\((\) Rent collected second year \(=48 \times 150=)\) \\
(£) 7200 \\
(Total collected over the two years \(=\)) \\
(£) 13950
\end{tabular} \& M1
A1
A1
M1
A1
A1

B1 \& | F.T. their number of allotments. |
| :--- |
| F.T. 'their 48 ' $\times £ 150$. Number of allotments rented must be different to number for first year. |
| F.T. their two amounts. |
| Alternative Methods |

\hline | Look for |
| :--- |
| - spelling |
| - clarity of text explanations, |
| - the use of notation (watch for the use of ' $=$ ', ' $£$ ' and ' \times ' being appropriate) |
| QWC2: Candidates will be expected to |
| - present work clearly, with words explaining process or steps |
| AND |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer |
| QWC1: Candidates will be expected to |
| - present work clearly, with words explaining process or steps |
| OR |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer | \& QWC2

9 \& | QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| :--- |
| QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR |
| Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar. |

\hline 6. Nigel 2 Rhian 6 \& B2 \& ```
Must be whole numbers. SC1 if reversed.
B1 for
'their score for Rhian' = 'their score for Nigel' + 4.
B1 for
'their score for Rhian' = 'their score for Nigel' }\times3\mathrm{ .

``` \\
\hline \begin{tabular}{l}
7(a) \(\quad\) (Insurance \(=\) )
\[
\begin{array}{r}
(\mathfrak{f}) 144-(\mathfrak{f}) 30 \times 4=(\mathfrak{f}) 24
\end{array}
\] \\
(b)
\[
\begin{aligned}
& (2 / 3 \times £ 144=) \quad(£) 96 \\
& \quad(\text { Each paid }) \frac{(£) 144-(£) 96}{2} \\
& \\
& =(£) 24
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
Allow embedded answers. \\
For sight of \((£) 96\). \\
F.T. 'their \(£ 96\) '.
\[
\begin{aligned}
& \frac{\text { Alternative Methods } 7(\mathrm{~b})}{} \\
& \begin{array}{rlll}
(1 / 3 \times £ 144=) \quad(£) 48 & \text { OR } & \text { Sight of }{ }^{1} / 6 & \text { B1 } \\
(£) 48 \div 2 & \text { OR } & 1 / 6 \times 144 & \text { M1 } \\
& =(£) 24 & & \text { Al }
\end{array}
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised \\
Unit 1 Foundation Tier November 2014
\end{tabular} & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
8(a) Use of Volume \(=\) length \(\times\) width \(\times\) height. \\
(Volume \(=\) ) \(3 \times 2 \times 0.5\)
\[
=3\left(\mathrm{~m}^{3}\right)
\] \\
(b) (Total length \(=\) ) \(3+2+3+2+4 \times 0 \cdot 5\)
\[
=12(\mathrm{~m})
\] \\
\((\) Cost \(=)\) \\
(£)48
\end{tabular} & \[
\begin{gathered}
\hline \text { M1 } \\
\text { m1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
6
\end{gathered}
\] & \begin{tabular}{l}
Allow \(3 \times 2 \times 50\) \\
Also accept \(300 \times 200 \times 50\). \\
C.A.O. \\
For attempt to add at least 5 lengths. \\
C.A.O. \\
F.T. \(4 \times\) 'their total length'.
\end{tabular} \\
\hline 9(a) \(\quad\)\begin{tabular}{rl}
\(480 \times 13 \cdot 25\) & \\
& \(=6360(\) rand \()\) \\
(b) \(\quad 795 \div 13 \cdot 25\) & \\
& \(=(£) 60\) \\
& \\
& \\
& A difference of \()\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
F.T. 'their \((\mathfrak{£}) 60\) ' \(-(£) 8\). \\
Alternative method.
\[
\begin{array}{ccc}
795-(52 \times 13 \cdot 25) & \text { M1 } & \text { (106 rand gains M1) } \\
\div 13 \cdot 25 & \mathrm{ml} & \\
=(£) 8 & \mathrm{Al} &
\end{array}
\]
\end{tabular} \\
\hline \begin{tabular}{cccc} 
10. \begin{tabular}{cc}
\(320 \times 1 \cdot 6\) & OR \\
\(=512(\mathrm{~km})\) & OR
\end{tabular} \begin{tabular}{c}
\(480 \times 0.625\) \\
\(=300(\) miles \()\)
\end{tabular} \\
(Difference \(=\) ) \begin{tabular}{c}
32 km \\
AND
\end{tabular} \begin{tabular}{c} 
OR \\
'England'
\end{tabular} & 20 miles
\end{tabular} & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
3 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Or equivalent e.g. \(320 \times 8 / 5\) OR \(480 \times 5 / 8\). \\
F.T. their calculation if M1 awarded. Correct units must be given and England identified as the country in which most distance was covered.
\end{tabular} \\
\hline \begin{tabular}{l}
11. (a) A comment that refers to the fact that the gradient of the 'Llankavani line' appears to be greater than that of the 'Rossmuch line'. \\
(b) Some reference made to the different scales used on either the vertical or the horizontal axis. \\
(c) Uniform vertical scale of \(1 \mathrm{~cm} \equiv 100\) complaints. \\
Line from \((2004,500)\) to \((2014,600)\) AND labelled 'Llankavani'. \\
Line from \((2004,500)\) to \((2014,1000)\) AND labelled 'Rossmuch'.
\end{tabular} & \begin{tabular}{l}
E1 \\
E1 \\
B1 \\
L1 \\
L1 \\
5
\end{tabular} & \begin{tabular}{l}
A reference to 'gradient (steeper)' gains E1. A reference to '(different) scale' gains E1. Allow these marks whether given in (a) or (b). \\
Allow \(\pm 2 \mathrm{~mm}\). \\
Allow 'notches' with no values written. \\
Allow intent for both L1 marks. \\
Penalise -1 if both lines start from \((2004,0)\) or both lines start from (year,500) year \(\neq 2004\). \\
Penalise -1 , once only, if lines continue significantly beyond 2014. \\
B0, (possible)L1, L1 if no scale shown. \\
SC1 if both lines 'correct' but not labelled or incorrectly labelled.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised \\
Unit 1 Foundation Tier November 2014
\end{tabular} & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
12.(a) Samir AND a valid reason given. \\
(b) Catrin AND a valid reason given.
\end{tabular} & B1
B1 & \begin{tabular}{l}
e.g. 'Most of his points were 3 or over', \\
'Samir had a mean of \(3 \cdot 5\) '. \\
B0 if an incorrect mean given for Samir. \\
e.g. 'Samir's range was (only) 3' also allow 'Samir's range was 2 to 5 (or 5 to 2 )'. \\
B0 if an incorrect range given for Samir.
\end{tabular} \\
\hline \begin{tabular}{l}
13 (a) Question 2 because it is not relevant. \\
(b) Two valid reasons given. E.g. \\
"No box for 'Never'". \\
"'More than 10' and 'less than 20 ' are not exclusive". \\
"Less than 20 overlaps all the other three answers". \\
"Over what period of time?"
\end{tabular} & B1 & \begin{tabular}{l}
Allow e.g. 'not valid' for 'not relevant'. \\
Do not credit 'too personal'. \\
Q2 with no reason, or an incorrect reason, is B 0 . \\
B1 for each different reason (maximum of 2 marks). Ignore extra incorrect statements such as, ' 2 nd and \(3{ }^{\text {rd }}\) boxes overlap' or 'last box should be more than twenty' if marks have been awarded for correct reasons.
\end{tabular} \\
\hline \begin{tabular}{l}
14(a) \(\left.\begin{array}{rl}\text { Use of 'Distance' / 'Time' } \\ \text { (Average speed }=) \quad 30 / 1 \cdot 5\end{array}\right]\) \\
(b) Correct strategy. \\
Two different routes shown AND a correct distance given in each case.
\end{tabular} & M1
m1
A1
S1
B2


6 & \begin{tabular}{l}
Allow 1(h)30(m) or \(1 \cdot 3\) or \(90(\mathrm{~min})\) etc. for this M1. \\
C.A.O. \\
Shows understanding of table values with at least two distances correctly noted. \\
B1 for each. \\
A-B- D-C-A \(=27\) (miles) \\
A-C- B-D-A \(=29\) (miles) \\
A-C-D-B-A \(=27\) (miles) \\
A-D-B-C-A \(=29\) (miles) \\
A-D-C-B-A \(=30\) (miles)
\end{tabular} \\
\hline \begin{tabular}{l}
15.
\[
\begin{aligned}
& 3700 \\
& \frac{74}{3774} \\
& \frac{75.48}{3849.48} \\
& \begin{array}{l}
76.98(96) \\
\hline 3926.46(96)
\end{array}
\end{aligned}
\] \\
(£) 3926.47 OR 392647 (p)
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
4
\end{tabular} & \begin{tabular}{l}
For the evaluation of a correct \(2 \%\) OR Sight of \(1 \cdot 02\) (222 and 3922 imply use of \(3 \times 74\) and gain B1) \\
For attempting to find 3 different \(2 \%\). \\
OR \(3700 \times 1 \cdot 02^{3}\). \\
Or sight of (£)74 AND (£)75.48 AND (£)76.98(..) \\
F.T. one error. \\
Accept \(£ 3926.47\) p. Do not accept 3926.47 p. \\
Mark final value of investment \\
(i.e. do not penalise if they continue to give £226.47)
\end{tabular} \\
\hline
\end{tabular}

\section*{UNIT 1 - HIGHER TIER}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 1 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
1. (a) Question 2 because it is not relevant. \\
(b) Two valid reasons given. E.g. \\
"No box for 'Never'". \\
"'More than 10 ' and 'less than 20 ' are not exclusive". \\
"Less than 20 overlaps all the other three answers". \\
"Over what period of time?"
\end{tabular} & B1
B2

3 & \begin{tabular}{l}
Allow e.g. 'not valid' for 'not relevant'. \\
Do not credit 'too personal'. \\
Q2 with no reason, or an incorrect reason, is B 0 . \\
B1 for each different reason (maximum of 2 marks). Ignore extra incorrect statements such as, ' 2 nd and 3 rd boxes overlap' or 'last box should be more than twenty' if marks have been awarded for correct reasons.
\end{tabular} \\
\hline \begin{tabular}{l}
2 (a) A comment that refers to the fact that the gradient of the 'Llankavani line' appears to be greater than that of the 'Rossmuch line'. \\
(b) Some reference made to the different scales used on either the vertical or the horizontal axis. \\
(c) Uniform vertical scale of \(1 \mathrm{~cm} \equiv 100\) complaints. \\
Line from \((2004,500)\) to \((2014,600)\) AND labelled 'Llankavani'. \\
Line from \((2004,500)\) to \((2014,1000)\) AND labelled 'Rossmuch'.
\end{tabular} & E1 & \begin{tabular}{l}
A reference to 'gradient (steeper)' gains E1. A reference to '(different) scale' gains E1. Allow these marks whether given in (a) or (b). \\
Allow \(\pm 2 \mathrm{~mm}\). \\
Allow 'notches' with no values written. \\
Allow intent for both L1 marks. \\
Penalise -1 if both lines start from \((2004,0)\) or both lines start from (year,500) year \(\neq 2004\). \\
Penalise -1 , once only, if lines continue significantly beyond 2014. \\
B0, (possible)L1, L1 if no scale shown. \\
SC1 if both lines 'correct' but not labelled or incorrectly labelled.
\end{tabular} \\
\hline \begin{tabular}{l}
3 (a) Samir AND a valid reason given. \\
(b) Catrin AND a valid reason given.
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
2
\end{tabular} & \begin{tabular}{l}
e.g. 'Most of his points were 3 or over', \\
'Samir had a mean of \(3 \cdot 5\) '. \\
B0 if an incorrect mean given for Samir. \\
e.g. 'Samir's range was (only) 3' also allow 'Samir's range was 2 to 5 (or 5 to 2 )'. \\
B0 if an incorrect range given for Samir.
\end{tabular} \\
\hline \[
\text { 4. } \quad \begin{aligned}
(\text { Cost }=)(£) 27.50 & \times 1 \cdot 2 \text { or equivalent. } \\
& =(£) 33 \\
& (\text { Change }=)(£) 7
\end{aligned}
\] & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
3
\end{gathered}
\] & \begin{tabular}{l}
FT 40 - 'their 33' \\
If no marks, SC 1 for sight of \((£) 18\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 1 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
5. (Increase in population between 2001 and \(2011=\) )
\[
\begin{gathered}
(14500-12500=) \quad 2000 \\
(\% \text { increase } \approx) \frac{2000}{12500} \times 100 \quad \text { or equivalent. } \\
=16(\%)
\end{gathered}
\] \\
Working with appropriate approximations in calculation of the percentage.
\end{tabular} & B1
M1

A1
B1 & \begin{tabular}{l}
For sight of 2000. Accept sight of 1995. \\
F.T. 'their increase'. Accept \(\frac{1995}{12502} \times 100\) \\
Accept \(15 \cdot 9(\ldots).(\%)\) \\
(Using inappropriate approximations, e.g. 13000 and 14000, would not gain either of the B marks but could gain an M1 and an A1) \\
Using given numbers and writing \(15 \cdot 9 \ldots \%\) as \(16 \%\) for final answer is \(\mathrm{B} 1, \mathrm{M} 1, \mathrm{~A} 1, \mathrm{~B} 0\). \\
Alternative method
\[
\begin{array}{lccc}
\hline \frac{14500}{12500} \times 100 & O R & \frac{14497}{12502} \times 100 & M 1 \\
=116(\%) & =115 \cdot 9(. .)(\%) & \mathrm{Al}
\end{array}
\] \\
(\% increase \(\approx\) ) 16(\%) (\% increase =) 15.9..(\%) B1 Working with appropriate approximations in calculation of the percentage. \\
If no marks gained using this method, allow SC1 for \(13 \cdot 8(\%)\) or \(14(\%)\).
\end{tabular} \\
\hline \begin{tabular}{l}
Look for \\
- spelling \\
- clarity of text explanations (presented as a clear report) \\
- the use of notation (watch for the use of ' \(=\) ' and \(\%\) being appropriate) \\
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer \\
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer
\end{tabular} & QWC2






6 & \begin{tabular}{l}
QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR \\
Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar
\end{tabular} \\
\hline \(\begin{array}{ll}6 . & 3700 \\ & \frac{74}{3774} \\ & \frac{75.48}{3849.48} \\ & \frac{76.98(96)}{3926.46(96)} \\ & (£) 3926.47 \\ & \text { OR } 392647(p)\end{array}\) & B1
M1

A1
A1

4 & \begin{tabular}{l}
For the evaluation of a correct \(2 \%\) OR Sight of \(1 \cdot 02\) (222 and 3922 imply use of \(3 \times 74\) and gain B1) \\
For attempting to find 3 different \(2 \%\). \\
OR \(3700 \times 1 \cdot 02^{3}\). \\
Or sight of (£)74 AND (£)75.48 AND (£)76.98(..) \\
F.T. one error. \\
Accept \(£ 3926.47\) p. Do not accept 3926.47 p. \\
Mark final value of investment \\
(i.e. do not penalise if they continue to give £226.47)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 1 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
7(a) Use of 'Distance' / 'Time' \\
\((\) Average speed \(=) 30 / 1 \cdot 5\)
\[
=20(\mathrm{mph})
\] \\
(b) Correct strategy. \\
Two different routes shown AND a correct distance given in each case.
\end{tabular} & \begin{tabular}{l}
M1 \\
m1 \\
A1 \\
S1 \\
B2 \\
6
\end{tabular} & \begin{tabular}{l}
Allow 1(h)30(m) or \(1 \cdot 3\) or \(90(\mathrm{~min})\) etc. for this M1. \\
C.A.O. \\
Shows understanding of table values with at least two distances correctly noted. \\
B1 for each.
\[
\begin{aligned}
\text { A-B-D-C-A } & =27(\mathrm{miles}) \\
\text { A-C-B-D-A } & =29(\mathrm{miles}) \\
\text { A-C-D-B-A } & =27(\mathrm{miles}) \\
\text { A-D-B-C-A } & =29(\mathrm{miles}) \\
\text { A-D-C-B-A } & =30(\mathrm{miles})
\end{aligned}
\]
\end{tabular} \\
\hline 8. Sight of either
\[
\begin{aligned}
& \text { r }
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
U1 \\
4
\end{tabular} & \(\pi \times 5^{2}\) must be for area of circle not semicircle. Allow B1 for \(\left(\pi \times 5^{2}\right) / 2\) if clearly area of semicircle. Look out for M0 for \(\pi \times 5^{2}-(6+8+10)\). Accept \(54 \cdot 5\) to \(54 \cdot 6\) inclusive. Correct units for final answer. Independent of all other marks. \\
\hline \begin{tabular}{l}
9(a)
\[
\begin{aligned}
& 20^{2}=4^{2}+2 \times a \times 64 \\
& \frac{20^{2}-4^{2}}{2 \times 64} \quad(=a) \\
&=3\left(\mathrm{~ms}^{-2}\right)
\end{aligned}
\] \\
(b)
\[
\begin{aligned}
&\left(v^{2}=\right) 4^{2}+2 \times 3 \times 100(=616) \\
&(v=) 24 \cdot 8(\ldots)\left(\mathrm{ms}^{-1}\right)
\end{aligned}
\] \\
(so velocity of \(25 \mathrm{~ms}^{-1}\) not reached)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
For correct substitution. \\
F.T. their acceleration from part (a). A0 if 24.8 approximated to 25 and 'Yes' stated. Alternative methods. \((U \operatorname{sing} v=25)\)
\[
\begin{aligned}
a & =\frac{25^{2}-4^{2}}{2 \times 100} \text { OR } u^{2}=25^{2}-2 \times 3 \times 100 \\
& =3.045
\end{aligned}
\] \\
So \(a=3\) not enough. \(\quad\) So \(u=4\) not enough ('not enough' must be indicated for A1) Also (continuing from position reached in (a))
\[
\begin{array}{cl}
\left(\mathrm{v}^{2}=\right) & 20^{2}+2 \times 3 \times 36(=616) \\
& (\mathrm{v}=) 24 \cdot 8(\ldots)\left(\mathrm{ms}^{-1}\right)
\end{array}
\] \\
(so velocity of \(25 \mathrm{~ms}^{-1}\) not reached)
\end{tabular} \\
\hline  & \[
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
5 \\
\hline
\end{gathered}
\] &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 1 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline 11. \(\begin{aligned} 2 \times \frac{11}{8} & \text { or equivalent. } \\ & \times \frac{40}{60} \\ =11 / 6(\mathrm{hrs}) & \text { or equivalent } \\ & \\ & =1 \mathrm{hrs} 50 \mathrm{~min}\end{aligned}\) & M1
M1
A1
B1
4 & \begin{tabular}{l}
M2 for correct use of the ' 2 ' with all four of the numbers \(11,8,40\) and 60. \\
M1 for correct use of the ' 2 ' with any two of the numbers \(11,8,40\) and 60. \\
C.A.O. or equivalent e.g. \(1 \cdot 83 \ldots(\) hrs \()\). \\
F.T. conversion from 'their \(11 / 6\) ' only if of equivalent difficulty (not \(1 / 2\) an hour). \\
Allow 2 hrs 11 min or 2 hrs 10 min as FT from \(2 \cdot 18 \ldots \mathrm{hrs}\).
\end{tabular} \\
\hline \begin{tabular}{lll} 
12. & Sight of \(19 \cdot 5(\mathrm{~min})\) & AND \(20 \cdot 5(\mathrm{~min})\) \\
Sight of \(24 \times 60\) & \((=1440)(\mathrm{min})\) \\
\(\frac{24 \times 60}{19 \cdot 5}\) & OR & \(\frac{24 \times 60}{20 \cdot 5}\) \\
\(73 \cdot 8(\ldots)\) & AND & \(70 \cdot 2(\ldots)\) \\
& & \\
(Greatest number \(=) 74\) & AND (Least number \(=) 71\)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
Accept 19 min 30 sec . AND 20min 30sec. for B1. May be implied in calculations. \\
F.T numerator only for \(24 \times 60 \times 60\) or \(60 \times 60\). \\
F.T. if 'least \(19 \leq t<20\) OR greatest \(20<t \leq 21\) '. \\
F.T. 'their \(73 \cdot 8^{\prime}\) AND 'their \(70 \cdot 2\) ' rounded up. A0 for 73 and 70 (First capsule not considered).
\end{tabular} \\
\hline  & \begin{tabular}{l}
M1 \\
m1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
7
\end{tabular} & \begin{tabular}{l}
Or equivalent. \\
SC 1 for \(57\left({ }^{\circ}\right)\) \\
FT 'their 65' for all 4 marks \\
Accept \(22 \cdot 6(\ldots)\) and \(7 \cdot 9(\ldots)\). \\
F.T. their 'arc lengths' only if the method used for finding each of the arcs is correct.
\end{tabular} \\
\hline \begin{tabular}{l}
14 Sight of \(2 / 3 \times \pi \times 20^{3}\) or \(16755(\cdot 1 \ldots)\) or \(16000 \pi / 3\) \\
Sight of \(1 / 3 \times \pi \times 15^{2} \times h\)
\[
1 / 3 \times \pi \times 15^{2} \times h=9 / 40 \times 2 / 3 \times \pi \times 20^{3}
\] \\
(20-d=) or \((h=) \frac{9 \times 2 \times \pi \times 20^{3} \times 3}{40 \times 3 \times \pi \times 15^{2}} \quad\) or equivalent. \(=16(\mathrm{~cm})\)
\[
(d=) 4(\mathrm{~cm})
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
A1 \\
A1 \\
6
\end{tabular} & \begin{tabular}{l}
B0 if \(2 / 3 \times \pi \times 20^{3}\) evaluated incorrectly and used in further work. \\
' \(h\) ' clearly being the height of the cone. \\
May be written as \((20-d)\). Do not penalise lack of brackets at this stage. \\
F.T. 'their cone vol.' \(=9 / 40 \times\) 'their hemisphere vol.' For M1.
\[
\text { (l.h.s. }=235 \cdot 6 . . \times h \quad \text { r.h.s. }=3769 \cdot 9 \text { or } 3770 \text { ). }
\] \\
Allow M1only if \((20-d)\) is used without acknowledgement of the brackets.
\[
(3770 \div 235 \cdot 6)
\] \\
F.T. 20 - 'their 16 ' if M1 gained.
\end{tabular} \\
\hline
\end{tabular}

\section*{UNIT 2 - FOUNDATION TIER}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised Unit 2 (non calculator) \\
Foundation Tier November 2014
\end{tabular} & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
1. (a) (i) three hundred and forty six thousand, one hundred \\
(ii) 42604 \\
(b) 1122 \\
(c) 32 (p) \\
(d) 57 \\
(e) \(1,3,5,15\) \\
(f) 56 \\
(g) \(6 \times 20\) \\
(=) 120
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B2 } \\
& \\
& \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \\
& 10
\end{aligned}
\] & \begin{tabular}{l}
B1 for any 2 correct and no incorrect factors \\
OR 3 correct and no more than 1 incorrect OR all 4 correct and 1 incorrect \\
Accept \(6 \times 21\) or \(6 \times 22\) \\
126, 132 \\
M0 A0 for \(6 \times 21 \cdot 8=130.8\)
\end{tabular} \\
\hline \begin{tabular}{l}
2. (a) perpendicular \\
(b) (i) straight line drawn joining 2 points on circumference passing through centre \\
(ii) straight line touching circumference \\
(c)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
4
\end{tabular} & Intention of one horizontal line of the correct length in the correct position \\
\hline \begin{tabular}{l}
3.(a) 38 \\
(b) -15 \\
(c) (i) \((x=) 33\) \\
(ii) \((x=) 100\) \\
(iii) \(4 x=36\) ( \(\mathrm{x}=\) ) 9
\end{tabular} & \[
\begin{aligned}
& \text { B1 } \\
& \\
& 6
\end{aligned}
\] & \begin{tabular}{l}
Accept embedded answers \\
FT \(x=\) 'their 36 '/4 \\
Do not accept a final answer of 36/4.
\end{tabular} \\
\hline \begin{tabular}{l}
4.(a) likely \\
(b) \(10 / 127\) \\
(c) 6 triangles shaded
\end{tabular} & \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { B1 } \\
3
\end{gathered}
\] & \\
\hline \[
\begin{aligned}
& \text { 5. }(1000 \div 200) \quad 5 \text { (packets) } \\
& 5 \times(\mathfrak{f}) 3.50 \\
& (\mathfrak{£}) 17.50
\end{aligned}
\] & \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
3
\end{gathered}
\] & FT 'their 5 ' if \(1000 \div 200\) or equivalent seen. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised Unit 2 (non calculator) \\
Foundation Tier November 2014
\end{tabular} & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{ll} 
7. Pencil & 40 p or \((\mathfrak{£})(0) .40\) \\
Biro & 60 p or \((\mathfrak{£})(0) .60\) \\
Ruler & 80 p or \((\mathcal{£})(0) .80\) \\
Rubber & 25 p or \((\mathfrak{£})(0) .25\)
\end{tabular} & \[
\begin{gathered}
\text { B1 } \\
4
\end{gathered}
\] & FT 'their pencil' FT 'their pencil and biro' FT 'their pencil and biro and ruler' \\
\hline 8. Attempt to set up list of all ordered pairs, possibly given as a list or in a table. & M1 & \begin{tabular}{l}
At least 4 ordered pairs needed. Ordered pairs: \\
3,3 3,5 3,7 \\
\(\begin{array}{lll}5,3 & 5,5 & 5,7\end{array}\) \\
\(7,3 \quad 7,5 \quad 7,7\)
\end{tabular} \\
\hline All nine possible correct scores, including repeated values OR all nine ordered pairs with no incorrect scores
\[
(\mathrm{P}(16<\text { score }<36)=) 5 / 9
\] & \begin{tabular}{l}
A1 \\
A2 \\
4
\end{tabular} & \begin{tabular}{l}
FT 'their table or list of 9 scores' for possible A2. \\
Otherwise, FT for maximum of: A1 for a numerator of 5 in a fraction less than 1 . \\
A1 for a denominator of 9 in a fraction less than 1 . \\
Do not penalise incorrect reduction of fractions from a FT. \\
NB Penalise -1 for use of words such as ' 5 out of 9 ', ' 5 in 9 ' or '5:9'. \\
When both fraction and wrong notation seen, DO NOT penalise wrong notation.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 9. }(\angle \mathrm{ACB}=180-136=) 44\left({ }^{\circ}\right) \\
& (x=) 180-2 \times 44 \quad \text { OR } \quad(x=) 136-44 \\
& (x=) 92\left({ }^{\circ}\right)
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
3
\end{gathered}
\] & FT 'their 44' \\
\hline \[
\begin{aligned}
& \text { 10. (£)5.10-2 } 1 / 2 \times(\mathfrak{f}) 1.20 \\
& \text { (f)2.10 } \\
& 210 \div 30 \text { OR } 2.1(0) \div 0.3(0) \\
& 7 \text { (oranges) }
\end{aligned}
\] & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
\] & \begin{tabular}{l}
Complete method \\
FT 'their (f)2.10'
\end{tabular} \\
\hline (a) 11. Correct reflection & \[
\begin{gathered}
\hline \text { B2 } \\
2
\end{gathered}
\] & B1 for a reflection in any horizontal line or in \(x=3\) or sight of the line \(y=3\) \\
\hline
\end{tabular}


\section*{UNIT 2 - HIGHER TIER}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 2 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline (b) 1. Correct reflection & \[
\begin{gathered}
\text { B2 } \\
2
\end{gathered}
\] & B1 for a reflection in any horizontal line or in \(x=3\) or sight of the line \(y=3\) \\
\hline \begin{tabular}{l}
2. Basic Membership \\
(Total cost for basic membership \(=\) ) \(10 \times(\mathfrak{£}) 32+(\mathfrak{f}) 4 \times 2 \times 52\) or equivalent \((\) Total cost for basic membership \(=)(\mathfrak{£}) 736\)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
A complete correct method. \\
Correct total for basic membership. \\
If no marks for 'basic membership calculation', \\
award for SC1 for sight of \((12 \times(\mathfrak{f}) 32+(\mathfrak{f}) 4 \times 2 \times 52=)(\mathfrak{£}) 800\) \\
OR award SC1 for \((10 \times(\mathfrak{£}) 32+(\mathfrak{£}) 4 \times 52=)(£) 528\)
\end{tabular} \\
\hline \begin{tabular}{l}
Elite Membership \\
(Total cost for elite membership \(=\) )
\[
12 \times[(£) 60-0 \cdot 1 \times(£) 60] \text { or equivalent }
\] \\
\((\) Total cost for elite membership \(=)(£) 648\)
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & A complete correct method. Correct total for elite membership. SC1 for sight of \((\mathfrak{f}) 54\) or ( \(£\) ) 72 if \(2^{\text {nd }}\) M0A0. \\
\hline Conclusion that Elite Membership is cheaper AND by (£) 88 & B1 & FT only if both M marks were awarded OR if first SC and second M marks were awarded. \\
\hline \begin{tabular}{l}
Look for \\
- relevance \\
- spelling in at least 1 statement/sentence \\
- clarity of text explanations, \\
- the use of notation (watch for the use of ' \(=\) ', \(£, \%\) being appropriate) \\
A clear conclusion statement must be made before QWC2 can be awarded. \\
Count incorrect use of ' \(=\) ' in situations such as ' \(4 \times 2 \times 52=416+320\) ' within the 'few errors in mathematical form' \\
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units \((£)\) in their final answer \\
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units \((£)\) in their final answer
\end{tabular} &  & \begin{tabular}{l}
QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar \\
OR \\
evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. \\
QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. \\
A final unsupported statement only gets QWC0.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { (c) } 3 . \quad(a=) 63\left({ }^{\circ}\right) \\
& (b=) 117\left({ }^{\circ}\right)
\end{aligned}
\] & \begin{tabular}{c} 
B1 \\
B1 \\
2 \\
\hline
\end{tabular} & FT 180 - 'their \(a\) '. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 2 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
4. \(\quad 6 \times 3 / 4(=18 / 4)\) \\
\(41 / 2(\mathrm{~kg}) \quad\) (Requires \(2 \times 2(\mathrm{~kg})\) tins and \(1 \times 1 / 2(\mathrm{~kg})\) tin) \((2 \times(£) 5.20+1 \times(\mathfrak{f}) 1.70=\) ) \\
(£) 12.10
\end{tabular} & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
Accept \(3 / 4+3 / 4+3 / 4+3 / 4+3 / 4+3 / 4\). \\
FT 'their \(4 \frac{1}{2}\) ' provided of equivalent difficulty. \\
If no marks, award SC1 for at least two correct costings of combinations (with at least 1 involving 2 or 3 sizes of tin and at least 1 involving a multiple).
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\text { 5. } \begin{aligned}
& {[4 x+12+5 x-10+x+18+90]\left({ }^{\circ}\right)=360\left({ }^{\circ}\right) } \\
& \text { OR }[4 x+12+5 x-10+x+18]\left({ }^{\circ}\right)=270\left({ }^{\circ}\right) \\
& 10 x=250\left({ }^{\circ}\right) \\
& x=25\left({ }^{\circ}\right)
\end{aligned}
\] \\
Attempt to substitute into either \(4 x+12\) or \(5 x-10\) (Largest angle \(=\) ) \(115\left({ }^{\circ}\right)\)
\end{tabular} & \[
\begin{gathered}
\hline \text { M1 } \\
\\
\text { A1 } \\
\text { A1 } \\
\\
\\
\text { M1 } \\
\text { A1 } \\
5 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Using the angle sum of a quadrilateral. Accept informal notation throughout. \\
FT until \(2^{\text {nd }}\) error provided M1 awarded. If M0, award SC1 for \(x=7\left({ }^{\circ}\right)\left(\right.\) from equating angle total to \(180^{\circ}\) ) or for \(x=34\left(^{\circ}\right)\) (from omitting \(90^{\circ}\) from angle total). \\
Either appropriate substitution attempted. FT 'their \(x\) '. All substitutions must be correctly evaluated for the final mark.
\end{tabular} \\
\hline \begin{tabular}{l}
6. (a) (i) \(2 p<-7\) \(p<-7 / 2\) or \(p<-31 / 2\) or \(p<-3.5\) \\
(ii) -4 \\
(b) \(15 x+10-8 x+20\)
\[
7 x+30
\] \\
(c) 100
\end{tabular} & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\\
\text { B1 } \\
\text { B1 } \\
\\
\text { B1 } \\
6 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Collecting terms. \\
M0A0 for use of \(=\) sign, unless replaced by < ISW \\
FT 'their (i)' (for a negative answer only). \\
Correctly expanding both brackets. \\
FT from 3 correct terms. Mark final answer. \\
Accept 100/1
\end{tabular} \\
\hline \begin{tabular}{l}
7. (a) \(108 / 360\) or equivalent (e.g. 3/10) \\
(b) Sight of \(1-3 / 10(=7 / 10)\) or equivalent \(7 / 10 \times 720\) \\
504
\end{tabular} & \begin{tabular}{l}
B2 \\
M1 \\
m1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
B1 for numerator of 108 or denominator of 360 (or 180) in a fraction \(<1\). \\
Mark final answer. \\
FT 'their \(3 / 10\) ' (but not for an answer of \(1 / 2\) ). \\
Do not accept 504/720. If no marks, SC1 for sight of 216. \\
Alternative method:
\[
\begin{array}{lll}
3 / 10 \times 720(=216) & M 1 & F T \\
720-216 & \mathrm{ml} \text { their } 3 / 10 \\
504 & \text { Al }
\end{array}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
8. (a) \(7 n-2\) \\
(b) \((n+1)^{2}+2\) or equivalent
\end{tabular} & B2
B3


5 & \begin{tabular}{l}
B1 for \(7 n( \pm \ldots .\).\() or equivalent.\) \\
B2 for \((n+1)^{2}+\ldots \quad\) OR \(\quad\) for \((n+\mathrm{k})^{2}+2, \mathrm{k} \neq 0\) \\
B1 for \((n+\mathrm{k})^{2}, \mathrm{k} \neq 0 \quad\) OR for \(n^{2}+2\) \\
(or B1 for each correct term in \(n^{2}+2 n+3\), within a quadratic with more than one term)
\end{tabular} \\
\hline 9. Method to find the first variable Correct first variable Method to find the second variable Correct second variable & \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1 \\
4
\end{tabular} & \begin{tabular}{l}
Allow one slip but not in equated variable. \\
FT their first variable.
\[
(x=3, y=-1)
\] \\
An unsupported answer gets 0 marks.
\end{tabular} \\
\hline 10. \(\begin{aligned} & 1320000 \div 400 \\ & 3.3 \times 10^{3}\end{aligned}\) & \begin{tabular}{l}
M1 \\
A2 \\
3
\end{tabular} & \begin{tabular}{l}
Or equivalent. \\
A1 for equivalent correct answer, not given in standard form, e.g. 3300 or \(0.33 \times 10^{4}\) \\
OR A1 for \(a \times 10^{n}\) (with \(3<a<4\) and \(n\) a positive integer) following through from 'their 3300 '.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 2 Higher Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
11. (a) \(10 x^{2}+5 x y-4 x y-2 y^{2}\) \(10 x^{2}+x y-2 y^{2}\) or equivalent \\
(b) \(2(2 x-1)+3=x-5\)
\[
\begin{gathered}
3 x=-6 \\
x=-2
\end{gathered}
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
M2 \\
A1 \\
A1 \\
6
\end{tabular} & \begin{tabular}{l}
FT from 3 correct terms. \\
M1 for correctly cleared fractions by a valid method for any 2 terms. \\
Collecting terms. FT provided at least M1 awarded.
\end{tabular} \\
\hline \begin{tabular}{l}
12. \\
Angle BAD \(=180\left({ }^{\circ}\right)-2 x\left({ }^{\circ}\right)\) (angles in an isosceles triangle) \\
Angle BCD \(=180\left({ }^{\circ}\right)-\) Angle BAD OR \(180\left({ }^{\circ}\right)-\left[180\left({ }^{\circ}\right)-\right.\) \(2 x\left({ }^{\circ}\right)\) ] \\
(y) \(=2 x\left({ }^{\circ}\right)\) \\
(opposite angles in a cyclic quadrilateral add up to \(180\left({ }^{\circ}\right)\) )
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
3
\end{tabular} & \begin{tabular}{l}
Check diagram. \\
Allow first B1 without a full reason. \\
Second B1 is for clear use of cyclic quadrilateral. \\
Indication of correct circle theorem in words.
\end{tabular} \\
\hline \begin{tabular}{l}
13. (a) 6 \\
(b) \(\begin{array}{ccc}(\sqrt{ }(16 \times 2)-\sqrt{ } 2)^{2} & \text { or } & 32-\sqrt{ } 32 \sqrt{ } 2-\sqrt{ } 32 \sqrt{ } 2+2 \\ (3 \sqrt{ } 2)^{2} & \text { or } & \text { middle term }\end{array}= \pm 8 \pm 8\)
\end{tabular} & \[
\begin{gathered}
\hline \text { B3 } \\
\\
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
6
\end{gathered}
\] & \begin{tabular}{l}
B2 for \(\left((1 / 25)^{-\frac{1}{2}}=\right) 5\) \\
OR B2 for \(1+(1 / 5)^{-1}\) or \(1+25^{\frac{1}{2}}\) or \(1+\sqrt{ } 25\) or \(1+1 / 0 \cdot 2\) \\
B1 for \(\left(4^{0}=\right) 1\) OR for \((1 / 5)^{-1}\) or \(25^{\frac{1}{2}}\) or \(\sqrt{ } 25\) \\
RHS method needs 3 of 4 terms correct; accept \(\sqrt{ } 64\) as \(\sqrt{ } 32 \sqrt{ } 2\)
\end{tabular} \\
\hline \begin{tabular}{l}
14. (a) sight of \(5 / 12 \times 1 / 11\) OR \(1 / 12 \times 5 / 11\)
\[
\begin{aligned}
& 5 / 12 \times 1 / 11+1 / 12 \times 5 / 11 \quad \text { OR } \quad 5 / 12 \times 1 / 11 \times 2 \\
& =10 / 132(=5 / 66)
\end{aligned}
\] \\
(b) \(1-\mathrm{P}\) (no red ball) OR other complete method
\[
\begin{aligned}
& =1-7 / 12 \times 6 / 11 \\
& (=1-42 / 132) \\
& =90 / 132(=15 / 22)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
S1 \\
M1 \\
A1 \\
6
\end{tabular} & \begin{tabular}{l}
Complete correct method. \\
ISW
\[
\begin{aligned}
& \mathrm{P}(\mathrm{RR})+\mathrm{P}\left(\mathrm{RR} \mathrm{R}^{\prime}\right)+\mathrm{P}\left(\mathrm{R}^{\prime} \mathrm{R}\right) \\
& \text { or } \mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{RW})+\mathrm{P}(\mathrm{WR})+\mathrm{P}(\mathrm{RG})+\mathrm{P}(\mathrm{GR}) \\
& \text { or } \quad \text { correct numerical equivalent. }
\end{aligned}
\] \\
Calculations showing correct sum of products of probabilities (without replacement).
\end{tabular} \\
\hline 15. Reflection in \(y\) axis Curve passes through \((0,4)\) AND \((-3,0)\) & \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
2
\end{gathered}
\] & Clear intention shown. Co-ordinates need not be stated. \\
\hline
\end{tabular}

\section*{UNIT 3 - FOUNDATION TIER}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised \\
Unit 3 (calculator allowed) \\
Foundation Tier November 2014
\end{tabular} & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
1. (a) \((\mathfrak{f}) 8 \cdot 5(0)\) \\
(£) \(23 \cdot 85\) \\
(£) \(9 \cdot 98\) \\
(£) 42.33 \\
(b) (£)7.67 \\
(c) \(6 \times 1.99\) \\
(£) \(11 \cdot 94\)
\end{tabular} & \[
\begin{gathered}
\text { B1 } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
FT candidate's values, provided equivalent difficulty FT 50 - 'their \(42 \cdot 33\) '. \\
Or equivalent SC1 for \((9 \times 1.99=)(£) 17.91\)
\end{tabular} \\
\hline \begin{tabular}{l}
2. (a) 53000 \\
(b) 67 \\
(c) \(37 \cdot 8\)
\end{tabular} & \[
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { B1 } \\
3
\end{gathered}
\] & \\
\hline 3. \(42-(38-12)\) 16 & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
2 \\
\hline
\end{gathered}
\] & Or equivalent \\
\hline \[
\begin{aligned}
& \text { 4. } \begin{array}{l}
(6435-5793)=642 \text { (units used) } \\
642 \times 15(\mathrm{p}) \\
(£) 96 \cdot 3(0) \text { or } 9630(\mathrm{p})
\end{array}
\end{aligned}
\] & \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
3
\end{gathered}
\] & FT 'their 642' from working If given, \(£\) and/or p must be correct \\
\hline 5 \begin{tabular}{ll}
5 & Evidence of counting squares \\
& \(48-52\) (squares) \\
& \(240-260\left(\mathrm{~m}^{2}\right)\)
\end{tabular} & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
3
\end{gathered}
\] & F.T. \(5 \times\) 'their number of squares' \\
\hline \begin{tabular}{l}
6. (a) A and L OR F and J \\
(b) H and C
\end{tabular} & \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
2 \\
\hline
\end{gathered}
\] & \\
\hline \begin{tabular}{l}
7. (a) (i) any correct combination using 5, 3, 12 and 20 . \\
(ii) any correct combination \\
(b) (i) 11 \\
(ii) \(4 \times 9 \div(3-1)\) \\
(c) \(-10+-5\) \\
(d) \(-4 \times-6\)
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
6
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
5+3 & =20-12 \\
12+5 & =20-3 \\
12+3 & =20-5
\end{aligned}
\] \\
Accept answers in boxes or on lines \\
\(20 \div 5=12 \div 3\) or \(5 \div 3=20 \div 12\) (incl reciprocals) \\
Accept answers in boxes or on lines \\
A pair of brackets inserted correctly around subtraction. Extra brackets accepted if correct. Eg. \((4 \times 9) \div(3-1)\) \\
Select the two negative numbers. \\
In any order
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Unitised \\
Unit 3 (calculator allowed) \\
Foundation Tier November 2014
\end{tabular} & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
8. Choosing a combination of 4 and 6 to make 16 . \(4,4,4,4\) or \(6,6,4\) \\
Correct costing for one combination \\
(£) 12 or (£) \(11.6(0)\) \\
(£) \(11 \cdot 6(0)\) and a convincing argument that \(6,6,4\) is cheapest \\
OR both costings evaluated with a final answer of (£) \(11 \cdot 6(0)\) \\
Look for \\
- Spelling \\
- Clarity of text explanations, \\
- Consistent and correct use of \(£\) or p signs. \\
QWC2: Candidates will be expected to \\
- Present work clearly, with words explaining process and steps \\
AND \\
- Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer. \\
QWC1 : Candidates will be expected to \\
- Present work clearly, with words explaining process or steps \\
OR \\
- Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer.
\end{tabular} & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
QWC \\
2
\end{tabular} & \begin{tabular}{l}
Alternative method \\
Cost of 1 bottle from 6-bottle pack \(=(\mathfrak{f}) 4 \cdot 30 \div 6=\) (£)0.71(6). \\
Cost of 1 bottle from 4 -bottle pack \(=(£) 0 \cdot 75\). B1 for both. \\
B1 for "Buy 26 -bottle packs +14 6-bottle pack". \\
B1 for correct total price (£) \(11 \cdot 6(0)\) \\
QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar. \\
OR \\
Evident weakness in organisation of material but using acceptable mathematical form, with few, if any, errors in spelling, punctuation and grammar. \\
QWC0 Evident weakness in organisation of material, and errors in use of mathematical form, spelling, punctuation and grammar.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 9. A: } 12 \text { ('sides') } \\
& \qquad(36 \div 12=) 3(\mathrm{~cm}) \\
& \text { (Perimeter } \mathrm{B}=10 \times 3) 30(\mathrm{~cm})
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
3
\end{tabular} & \begin{tabular}{l}
Attempt to find the side length of a square. \\
FT candidate's number of 'sides' on perimeter A. No FT for \(36 \div 5\) \\
FT \(10 \times\) times 'their 3' \\
If no marks awarded, SC1 for B has perimeter of 10 'sides'.
\end{tabular} \\
\hline \[
\text { 10. (a) } 18 \text { (b) } 120=45+5 Y ~\left(\begin{array}{l}
\text { (b) } \\
5 Y=75 \\
Y
\end{array}\right.
\] & \[
\begin{gathered}
\text { B1 } \\
4
\end{gathered}
\] & Correct substitution Isolating the Y. Accept \(5 Y=120-45\) F.T if \(\mathrm{aY}=\mathrm{b}(\mathrm{a} \neq 1)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 3 (calculator allowed) Foundation Tier November 2014 & Mark & Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
11.(a) 39 \\
(b) D 5, C 9, B 6, A 4 \\
(c) 21 to 30 or C \\
(d) Use overlay \\
3 or 4 angles correct and correctly labelled \\
3 or 4 angles correct, labels not fully correct 2 angles correct and correctly labelled. \\
2 angles correct, labels not fully correct. \\
1 angle correct and correctly labelled. \\
OR \\
If 0 or 1 for the diagram or no diagram \\
360/24 \\
Angles are 75, 135, 90, and 60.
\end{tabular} & \[
\begin{gathered}
\text { B1 } \\
\text { B2 } \\
\text { B1 } \\
\text { B4 } \\
\text { OR } \\
\\
\text { B3 } \\
\text { B3 } \\
\text { B1 } \\
\text { OR } \\
\text { M1 } \\
\text { A1 } \\
8
\end{gathered}
\] & \begin{tabular}{l}
B1 for any two/three correct frequencies \\
If frequencies score zero then B 1 for all correct tallies. FT from their frequencies \\
Ft from their frequencies \\
If only B 1 is scored for the diagram, and all the angles given correctly, then cancel the B1 and award M1, A1. If B0 scored for the diagram, check the angles and the method to see if the M1 and the A1 can be awarded. \\
(1 is) \(15^{\circ}\) gets M1. \\
Or SC1 for all correct percentages. \(20 \cdot 8,37 \cdot 5,25,16 \cdot 7\)
\end{tabular} \\
\hline 12.3 (or 4) arcs and the bisector of the angle drawn. & B2
\[
2
\] & B1 for the first arc crossing both lines (or two equal radius arcs crossing both lines) and an attempt at the next stage in the construction. \\
\hline \begin{tabular}{l}
13. (a) \(45 \times 32 \times 30\) \\
(b) use of 1 litre \(=1000 \mathrm{~cm}^{3}\left(\right.\) eg 43L \(\left.=43000 \mathrm{~cm}^{3}\right)\) \\
(43litres is less than the volume of the tank) \\
The water will not overflow
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
U1 \\
M1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
Or equivalent \\
Accept ml \\
May be implied but not stated explicitly. Eg. \(200 \mathrm{~cm}^{3}\) space left. \\
FT candidate's volume of tank provided M1 awarded in part (a).
\end{tabular} \\
\hline 14. \(2 / 8\) is 48 (pupils) or \(1 / 4\) is 48 (pupils) \(48 \times 4\) or equivalent 192 & \[
\begin{gathered}
\mathrm{B} 1 \\
\text { M1 } \\
\text { A1 } \\
3 \\
\hline
\end{gathered}
\] & \\
\hline \begin{tabular}{lll}
\(15.180-(360 / 5)\) & OR & \(((5-2) \times 180) / 5\) \\
& & \(108\left({ }^{\circ}\right)\)
\end{tabular} & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
2
\end{gathered}
\] & Or equivalent \\
\hline \begin{tabular}{l}
16. Area of one rectangle correctly evaluated (e.g. whole mirror) \\
Area of two or more different white or black rectangles correctly evaluated \\
A complete method of subtracting or adding areas
\[
\begin{array}{lccc}
\text { e.g. } 800- & (2 \times 20 \times 2+2 \times 40 \times 2 & - & 4 \times 2 \times 2) \\
\text { mirror } & \text { wooden strips } & \text { overlap } \\
& & =576\left(\mathrm{~cm}^{2}\right)
\end{array}
\]
\end{tabular} & \[
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
\] & \begin{tabular}{l}
Possible calculation for the white pieces: 4 corner pieces \(4 \times 2 \times 2\) (assuming squares) \\
2 long rectangles \(2 \times 12 \times 2\) \\
2 tall rectangles \(2 \times 32 \times 2\) \\
Centre piece \(12 \times 32\) \\
Or B1B1M1A1 for \(36 \times 16=576\left(\mathrm{~cm}^{2}\right)\) \\
CAO
\end{tabular} \\
\hline \begin{tabular}{l}
17 (a) All points plotted correctly. \\
(b) Appropriate straight line of best fit drawn with some values above and below the line. \\
(c) from their line of best fit \(\pm 0 \cdot 05\) (tonnes).
\end{tabular} & \begin{tabular}{l}
B2 \\
B1 \\
B1 \\
4
\end{tabular} & \begin{tabular}{l}
B1 for 3, 4 or 5 points plotted correctly, not joined, or B1 for all points plotted correctly but joined. Mark intention. \\
FT from their line. B0 if no line drawn.
\end{tabular} \\
\hline
\end{tabular}


\section*{UNIT 3 - HIGHER TIER}
\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 3 Higher Tier November 2014 & Mark & Final Mark Scheme \\
\hline 1.
\[
\begin{array}{r}
-20+9.8 \times 5 \\
=29
\end{array}
\] & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
2
\end{gathered}
\] & \\
\hline 2. All three amounts correct in comparable form e.g. \(20 \%, 30 \%, 50 \%\), OR \(0.2,0.3,0.5\) or equivalent
2:3:5 & \[
\begin{gathered}
\text { B2 } \\
\\
\text { B1 } \\
3
\end{gathered}
\] & Allow fractions of a sum of money. B1 for any 2 amounts correct in comparable form. \\
\hline \begin{tabular}{l}
3. (a) All points plotted correctly. \\
(b) Appropriate straight line of best fit drawn with some values above and below the line. \\
(c) from their line of best fit \(\pm 0.05\) (tonnes).
\end{tabular} & \[
\begin{gathered}
\text { B2 } \\
\text { B1 } \\
\text { B1 } \\
4
\end{gathered}
\] & \begin{tabular}{l}
B1 for 3, 4 or 5 points plotted correctly, not joined, or B1 for all points plotted correctly but joined. Mark intention. \\
FT from their line. B0 if no line drawn.
\end{tabular} \\
\hline \begin{tabular}{l}
4. (a) Line or curve drawn from end of existing line to (08:30,0). \\
Straight line drawn from \((08: 30,0)\) to \((08: 45,15: 00)\). \\
(b) 08:45-08:30
\[
=15(\mathrm{~min})
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
B2 \\
M1 \\
A1 \\
5
\end{tabular} & \begin{tabular}{l}
FT their first line. \\
B1 for straight line drawn from ( \(08: 30,0\) ) with correct gradient. ( 500 m every 5 min ) but not finishing at ( \(08: 45,15: 00\) ), OR B1 for straight line finishing at the school with correct gradient but not starting immediately after the first line. FT 'their 08:45'.
\end{tabular} \\
\hline 5. \(180-(360 / 5)\) OR \(\begin{aligned} & ((5-2) \times 180) / 5 \\ & 108\left({ }^{\circ}\right)\end{aligned}\) & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
2
\end{gathered}
\] & Or equivalent. \\
\hline 6. Suitable arcs drawn for \(60^{\circ}\) angle. \(60^{\circ}\) angle drawn with line 6 cm long. Correct arcs drawn from the ends of the 10 cm and 6 cm lines. Lines of length 7 cm and 4 cm joining to complete the quadrilateral. & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\\
\text { B1 } \\
4
\end{gathered}
\] & \begin{tabular}{l}
Allow \(\pm 2^{\circ}\) for the \(60^{\circ}\) angle, \(\pm 2 \mathrm{~mm}\) for all lengths. \\
Only award this B1 for the quadrilateral shown.
\end{tabular} \\
\hline \begin{tabular}{l}
7.Area of one rectangle correctly evaluated (e.g. whole mirror) Area of two or more different white or black rectangles correctly evaluated \\
A complete method of subtracting or adding areas \(\begin{array}{cc}\text { e.g. } 800- & (2 \times 20 \times 2+2 \times 40 \times 2 \\ \text { mirror } & \text { wooden strips }\end{array} \quad \begin{gathered}4 \times 2 \times 2) \\ \text { overlap }\end{gathered}\)
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 } \\
& \\
& \text { M1 }
\end{aligned}
\] & \begin{tabular}{l}
Possible calculation for the white pieces: \\
4 corner pieces \(4 \times 2 \times 2\) (assuming squares) \\
2 long rectangles \(2 \times 12 \times 2\) \\
2 tall rectangles \(2 \times 32 \times 2\) \\
Centre piece \(12 \times 32\) \\
OR B1B1M1A1 for \(36 \times 16=576\left(\mathrm{~cm}^{2}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
=576\left(\mathrm{~cm}^{2}\right)
\] \\
QWC: \\
Look for \\
- correct units used i.e. \(\mathrm{cm}^{2}\) \\
- correct use of mathematical notation e.g.,,\(+-=\). \\
- spelling in at least 1 statement/sentence \\
- clarity of text explanations
\end{tabular} & A1 & \begin{tabular}{l}
CAO \\
QWC2 Presents material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1 Presents material in a coherent and logical manner but
\end{tabular} \\
\hline \begin{tabular}{l}
QWC2: Candidates will be expected to \\
- present work clearly, with words or quantities shown for clarity of process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer \\
QWC1: Candidates will be expected to \\
- present work clearly, with words or quantities shown for clarity of process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer
\end{tabular} & \[
\begin{gathered}
\text { QWC } \\
2
\end{gathered}
\] & \begin{tabular}{l}
with some errors in use of mathematical form, spelling, punctuation or grammar \\
OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. \\
QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Unitised Unit 3 Higher Tier November 2014 & Mark & Final Mark Scheme \\
\hline \[
\text { 17. } \begin{aligned}
(\mathrm{PQ}=)(12.6 / \sin 44) \times \sin 28 \\
(\mathrm{PQ}=) 8.5(154 \ldots)(\mathrm{cm})
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { M2 } \\
\text { A1 } \\
3
\end{gathered}
\] & M 1 for \(\mathrm{PQ} / \sin 28=12.6 / \sin 44\) or equivalent \\
\hline \[
\begin{aligned}
& \text { 18. } \text { Volume scale factor }=3510 / 130 \\
& \begin{array}{c}
\text { Length scale factor }=3 \\
\text { Height of water }=12 / 3 \quad=27(c m)
\end{array}
\end{aligned}
\] & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] & \begin{tabular}{l}
FT cube root of their 27 provided M1 awarded. \\
Alternative: \\
M2 for \(h^{3}=12^{3} \times 130 / 3510\). M1 for \((h / 12)^{3}=130 / 3510\) or equivalent. \\
\(m 1\) for \(h=\sqrt[3]{12^{3} \times \frac{130}{3510}}\). Al for \(4(\mathrm{~cm})\).
\end{tabular} \\
\hline \begin{tabular}{l}
19. (a) \(5(\mathrm{x}+1)+4(\mathrm{x}-2)\) as numerator AND \((\mathrm{x}-2)(\mathrm{x}+1)\) as denominator \\
OR multiply throughout by \((x-2)\) and \((x+1)\)
\[
\begin{array}{r}
5(\mathrm{x}+1)+4(\mathrm{x}-2)=2(\mathrm{x}-2)(\mathrm{x}+1) \\
0=2 \mathrm{x}^{2}-11 \mathrm{x}-1
\end{array}
\]
\[
\begin{aligned}
& \text { (b) } x=\frac{11 \pm \sqrt{(-11)^{2}-4 \times 2 \times(-1)}}{2 \times 2} \\
& x=\frac{11 \pm \sqrt{129}}{4} \\
& x=5.59 \text { and } \mathrm{x}=-0.09
\end{aligned}
\] \\
(Answers to 2 d.p.)
\end{tabular} & \begin{tabular}{l}
A1 \\
A1 \\
M1 \\
A1 \\
A1 \\
7
\end{tabular} & \begin{tabular}{l}
Brackets required or implied later. \\
M1 for either correct numerator or denominator, or multiply throughout with 1 error. \\
convincing \\
Allow one error, in sign or substitution, but not in the formula \\
CAO \\
CAO
\end{tabular} \\
\hline \begin{tabular}{l}
20. (a) Uniform scale on the vertical axis starting at 0 in blocks of 0.5 . \\
Appropriate width bars of height 1.4, 2.6, 2 . \\
(b) 6
\end{tabular} & \begin{tabular}{l}
B1 \\
B2
B1
\[
4
\]
\end{tabular} & \begin{tabular}{l}
FT their scale for all remaining marks provided not frequencies used. \\
B1 for 2 correct bars or B1 for sight of correct frequency densities stated.
\end{tabular} \\
\hline \begin{tabular}{l}
21. a) Tangent drawn at \(\mathrm{x}=1\). \\
Idea of increase in \(y /\) increase in \(x\). \\
Gradient from a reasonable tangent. \\
(b) Split into 3 areas and attempt to sum \\
\((\) Area \(=) 1 / 2 \times 1(3+2 \times 5+2 \times 11+21)\)
\[
=28\left(\text { units }^{2}\right)
\]
\end{tabular} & S1
M1
A1
M1
M1
A1
6 & \begin{tabular}{l}
\[
\begin{gathered}
\text { Alternative method: } M 1 \text { for }(d y / d x)=4 x \\
\text { A1 for } 4 \times 1 \\
\text { A1 for } 4
\end{gathered}
\] \\
Or equivalent. Award for up to 1 error in reading scale. CAO
\end{tabular} \\
\hline
\end{tabular}

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk```

