

GCSE MARKING SCHEME

MATHEMATICS - UNITISED

NOVEMBER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2014 examination in GCSE MATHEMATICS - UNITISED. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

UNIT 1 - FOUNDATION TIER

GCSE Mathematics - Unitised Unit 1 Foundation Tier November 2014	Mark	Final Mark Scheme Comments
1(a) January December February November March	B1	Accept any unambiguous indication of correct order including -8 -5 -2 3 7
(b) 3	B1	Do not accept a list of months.
(c) 15(°C)	B1	Allow –15(°C)
(d) $-2(^{\circ}C)$	B1	
2	4	
2. Horizontal line 11cm long	B1	Accept intent to be horizontal Δc_{cept} intent to be horizontal
Circle with radius 4cm.	B1	Do not accept 'free hand' drawing.
Midpoint unambiguously identified.	B1	F.T. their line length.
Line drawn at an angle of 70° as per sketch.	B1	
		If <u>all</u> four marks gained but logo not as intended (e.g.
		centre of circle not at identified midpoint), penalise -1 .
2. Eighing $(0,0)$, 0.92, and 0.75	4 D2	All connect desires (D, c) and (D, c) on (D, c)
OR = 90% (82%) and 75%	БЭ	fractions with common denominator OR correct work
OR = 90/100 = 82/100 and $75/100$ or equivalent		using a common amount for sales made OR a valid
OR three correct calculations for a common amount.		combination
AND stating 'NO'.		AND stating 'NO'. (The 'NO' must follow from a
		correct reason).
		B2 for the above BUT with 'NO' not stated or stated for
		an incorrect reason. B1 for having only two correct values that may be
		compared (with or without a statement)
		Ignore subsequent working if marks gained.
	3	
4(a) 28	B1	
(b) 70	B1	
(c) Scotland \square \square \square \square \square \square \square \square \square	B1	7 symbols. Ignore poor drawings.
England		
Ireland and Wales \square \square or equivalent.	B1	1 full symbol plus $\frac{3}{4}$ of the symbol. F.T. their answer to
1		(b), provided it is of equal difficulty, correct to the
		nearest 10.
		Penalise contiguous or disjointed symbol -1, once only.
	4	

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
Unit 1 Foundation Tier November 2014 5 (Pented out first year =) $\frac{3}{4} \times 60$	M1	Comments
(Rent collected first year $45 \times (\pounds)150 = 100$) (Rented out second year $200 \times 8 \times 60$) = 48	A1 A1 M1 A1	F.T. their number of allotments.
(Rent collected second year = 48×150 =) (£)7200 (Total collected over the two years =) (£)13950	A1 B1	F.T. 'their 48' \times £150. Number of allotments rented must be different to number for first year. F.T. their two amounts
		$\begin{array}{c c} \underline{Alternative\ Methods} \\ & OR \\ 60 \times (\pounds) 150 \\ = (\pounds) 9000 \\ A1 \\ \end{array} \begin{array}{c} OR \\ 3'_{4} \times 60 \\ = 45 \\ A1 \\ \end{array}$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Look for • spelling • clarity of text explanations, • the use of notation (watch for the use of '=', '£' and '×' being appropriate)	QWC2	QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
QWC2: Candidates will be expected to • present work clearly, with words explaining process or steps AND		QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR
 make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to 		acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
 present work clearly, with words explaining process or steps OR make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer 	9	QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar.
6. Nigel 2 Rhian 6	B2	Must be whole numbers. SC1 if reversed.
	2	B1 for 'their score for Rhian' = 'their score for Nigel' + 4. B1 for 'their score for Rhian' = 'their score for Nigel' × 3.
7(a) (Insurance =) $(\pounds)144 - (\pounds)30 \times 4$ = $(\pounds)24$	M1 A1	Allow embedded answers.
(b) $(\frac{2}{3} \times \pounds 144 =)$ $(\pounds)96$ (Each paid) $(\pounds)144 - (\pounds)96$ 2	B1 M1	For sight of (£)96. F.T. 'their £96'.
$= (\pounds)24$	A1 5	$\begin{array}{c} \underline{Alternative\ Methods\ 7(b)}\\ \hline (l'_3 \times \pounds 144 =) (\pounds)48 OR Sight\ of\ l'_6 B1\\ \hline (\pounds)48 \div 2 OR l'_6 \times 144 M1\\ = (\pounds)24 A1 \end{array}$

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
Unit 1 Foundation Tier November 2014		Comments
8(a) Use of Volume = length \times width \times height.	M1	Allow $3 \times 2 \times 50$
(Volume =) $3 \times 2 \times 0.5$	ml	Also accept $300 \times 200 \times 50$.
$= 3(m^3)$	A1	C.A.O.
(b) (Total length =) $3 + 2 + 3 + 2 + 4 \times 0.5$	M1	For attempt to add at least 5 lengths.
= 12(m)	A1	C.A.O.
(Cost =) (£)48	A1	F.T. $4 \times$ 'their total length'.
	6	
9(a) 480 × 13.25	M1	
= 6360 (rand)	A1	
osoo (runa)		
(b) $795 \div 13.25$	M1	
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	A1	
$(\lambda \text{ difference of })$ (f)8	A1	FT 'their (f)60' – (f)8
(A difference of) (2)8	A1	$\begin{array}{c} 1.1. \text{ then } (2)00 = (2)0. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		$\frac{Alternative method.}{705 (52 \times 12.25)} M1 (106 used asing M1)$
		$793 - (52 \times 13.23)$ M1 (100 rana gains M1)
		$\div 13.25$ m1
	5	= (t)8 AI
$10 220 \times 1.6 OP 480 \times 0.625$		Or aquivalant a g $220 \times 8/5$ OP $480 \times 5/8$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Of equivalent e.g. $520 \times 6/5$ OK $480 \times 5/6$.
= 512 (Kiii) OK $= 500$ (lilles)	AI	E.T. their coloulation if M1 awarded
(Difference -) 32km OP 20 miles	A 1	Correct units must be given and England identified as
(Difference –) 52km OK 20 miles	AI	the country in which most distance was severed
AND Eligiand	2	the country in which most distance was covered.
11 (a) A common that refers to the fact that the	5	
aradiant of the 'Llankayoni line' appears to be	EI	A reference to 'gradient (steener)' going E1 A reference
gradient of the Liankavani fine appears to be		to (different) cools' coins E1. Allow these modes
greater than that of the Rossmuch line.		to (different) scale gains E1. Anow these marks $a = b = b = a = b$
(h) Some reference mode to the different cooler	E1	whether given in (a) or (b).
(b) Some reference made to the different scales	EI	
used on either the vertical or the horizontal axis.		
() H $()$ $()$ $()$ $()$ $()$ $()$ $()$ $()$	D1	
(c) Uniform vertical scale of $1 \text{ cm} \equiv 100 \text{ complaints.}$	BI	Allow $\pm 2mm$.
		Allow 'notches' with no values written.
		Allow intent for both L1 marks.
Line from $(2004, 500)$ to $(2014, 600)$ AND	T 1	
Line from $(2004, 500)$ to $(2014, 600)$ AND		Penalise -1 if <u>both</u> lines start from (2004,0) or <u>both</u>
labelled Llankavani'.	T 1	lines start from (year, 500) year $\neq 2004$.
Line from (2004, 500) to (2014, 1000) AND	LI	Penalise –1, once only, if lines continue significantly
labelled 'Rossmuch'.		beyond 2014.
		B0, (possible)L1, L1 if no scale shown.
		SCI if <u>both</u> lines 'correct' but not labelled or incorrectly
	_	labelled.
	5	

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
Unit I Foundation Tier November 2014		Comments
12.(a) Samir AND a valid reason given.	B1	e.g. 'Most of his points were 3 or over',
		'Samir had a mean of 3.5 '.
		B0 if an incorrect mean given for Samir.
(b) Catrin AND a valid reason given.	B1	e.g. 'Samir's range was (only) 3' also allow 'Samir's
		range was 2 to 5 (or 5 to 2)'.
		B0 if an incorrect range given for Samir.
	2	
13 (a) Question 2 because it is not relevant.	B1	Allow e.g. 'not valid' for 'not relevant'.
		Do not credit 'too personal'.
		O ₂ with no reason or an incorrect reason is B0
(b) Two valid reasons given E g		
"No box for 'Never"	B2	B1 for each different reason (maximum of 2 marks)
"More than 10' and 'less than 20' are not exclusive"	52	Ignore extra incorrect statements such as 2^{nd} and 3^{rd}
"I ess than 20 overlans all the other three answers"		boxes overlan' or 'last box should be more than twenty'
"Over what period of time?"		if marks have been awarded for correct reasons
over what period of time?	3	In marks have been awarded for concert reasons.
1/(a) Use of 'Distance' / 'Time'		Allow $1(h)30(m)$ or 1.3 or $90(min)$ etc. for this M1
(Average speed =) -20/1.5	1v11 m1	
$(\text{Average speed} -) 50 \neq 1.5$ $= 20 \text{ (mnh)}$	A 1	CAO
– 20 (mpn)	AI	C.A.O.
(b) Correct strategy	<u>S1</u>	Shows understanding of table values with at least two
(b) Concersuategy.	51	distances correctly noted
Two different routes shown AND a correct distance	B2	B1 for each
given in each case	02	$A_B - D_C - A = 27$ (miles)
Biven in each ease.		A-C-B-D-A = 29(miles)
		A-C-D-B-A = 27(miles)
		$A_D B_C A = 29$ (miles)
		A-D-C-B-A = 30(miles)
	6	
15 3700	B1	For the evaluation of a correct 2% OR Sight of 1.02
	D1	(222 and 3922 imply use of 3×74 and gain B1)
3774		(222 and 3)22 mipry use of 5% (4 and gain D1)
75.48	M1	For attempting to find 3 different 2%
3849.48	1411	$OR = 3700 \times 1.02^3$
76.08(06)		OK 5700 × 1 02 .
3926 46(96)	A 1	Or sight of $(f)74$ AND $(f)75$ 48 AND $(f)76$ 98()
$(f) 3026 47 \cap R = 302647(n)$		F T one error
(<i>L</i>) 5720.47 OK 572047(p)		Λ_{ccent} f3026 Λ_{7n} Do not accent 3026 Λ_{7n}
		Mark final value of investment
		(i.e. do not populize if they continue to give food 47)
	Λ	(i.e. do not penanse if they continue to give £220.47)
	4	

UNIT 1 - HIGHER TIER

GCSE Mathematics - Unitised Unit 1 Higher Tier November 2014	Mark	Final Mark Scheme
1 (a) Ouestion 2 because it is not relevant	B1	Allow e g 'not valid' for 'not relevant'
	DI	Do not credit 'too personal'
		O_2 with no reason or an incorrect reason is B0
(b) Two valid reasons given. E.g.		~
"No box for 'Never".	B2	B1 for each different reason (maximum of 2 marks).
"More than 10' and 'less than 20' are not exclusive".		Ignore extra incorrect statements such as, '2 nd and 3 rd
"Less than 20 overlaps all the other three answers".		boxes overlap' or 'last box should be more than twenty'
"Over what period of time?"		if marks have been awarded for correct reasons.
	3	
2 (a) A comment that refers to the fact that the	E1	
gradient of the 'Llankavani line' appears to be		A reference to 'gradient (steeper)' gains E1. A reference
greater than that of the 'Rossmuch line'.		to '(different) scale' gains E1. Allow these marks
		whether given in (a) or (b).
(b) Some reference made to the different scales	EI	
used on enner the vertical of the horizontal axis.		
(c) Uniform vertical scale of $1 \text{ cm} = 100$ complaints	B1	Allow $\pm 2mm$
(c) Onnorm vertical scale of rem = 100 comptaints.	DI	Allow 'notches' with no values written
		Anow notices with no values written.
		Allow intent for both L1 marks.
Line from (2004, 500) to (2014, 600) AND	L1	Penalise –1 if <u>both</u> lines start from (2004,0) or <u>both</u> lines
labelled 'Llankavani'.		start from (year, 500) year \neq 2004.
Line from (2004, 500) to (2014, 1000) AND	L1	Penalise –1, once only, if lines continue significantly
labelled 'Rossmuch'.		beyond 2014.
		B0, (possible)L1, L1 if no scale shown.
		SCI if <u>both</u> lines 'correct' but not labelled or incorrectly
	5	labelled.
3 (a) Samir AND a valid reason given		e g 'Most of his points were 3 or over'
5 (a) Samir AND a vand reason given.	DI	'Samir had a mean of 3.5'
		B0 if an incorrect mean given for Samir
(b) Catrin AND a valid reason given.	B1	e.g. 'Samir's range was (only) 3' also allow 'Samir's
		range was 2 to 5 (or 5 to 2)'.
		B0 if an incorrect range given for Samir.
	2	
4. (Cost =) (£)27.50 × 1 · 2 or equivalent.	M1	
$=(\pounds)33$	A1	
(Change =) $(\pounds)7$	A1	FT 40 - 'their 33'
	_	It no marks, SC1 for sight of (\pounds) 18.
	3	

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
Unit I Higher Tier November 2014		Comments
5. (Increase in population between 2001 and $2011 =$)	D1	
(14500 - 12500 =) 2000	BI	For sight of 2000. Accept sight of 1995.
(% increase \approx) $\frac{2000}{12000} \times 100$ or equivalent.	MI	F.1. 'their increase'. Accept $\frac{1995}{12500} \times 100$
12500	. 1	12502
= 16(%)	AI D1	Accept 15.9()(%)
Working with appropriate approximations in	BI	(Using inappropriate approximations, e.g. 15000 and
<u>calculation</u> of the percentage.		14000, would not gain either of the B marks but could
		gain an MI and an AI)
		Using given numbers and writing 15.9% as 16% for
		Inal answer is B1,M1,A1,B0.
		$\frac{Alternative methoa}{14500 \times 100} Ml$
		$\frac{14500}{12500} \times 100 \text{ OR } \frac{14497}{12502} \times 100 \text{ MI}$
		$\begin{array}{cccc} 12500 & 12502 \\ -11600 & -11500 \\ \end{array}$
		$ \begin{array}{c} -110(70) & -115.9()(70) & A1 \\ (9/in \operatorname{prog}_{22} \sim) 16(9/i) & (9/in \operatorname{prog}_{22} \sim) 15.0 & (9/i) & B1 \\ \end{array} $
		(% increase ~) 10(%) (% increase -) 15.9(%) B1 Working with appropriate approximations in
		adjustion of the percentage
		C <u>alculation</u> of the percentage. DI
		1) no marks gained <u>using this method</u> , allow SC1 Jor $13.8(04)$ or $14.0(4)$
Look for	OWC2	OWC2 Presents relevant material in a coherent and
• spelling	QWC2	logical manner using acceptable mathematical form
 clarity of text explanations (presented as a clear 		and with few if any errors in spelling, nunctuation and
report)		orammar
• the use of notation (watch for the use of '=' and %		Sidilinai.
being appropriate)		OWC1. Presents relevant material in a coherent and
		logical manner, but with some errors in use of
OWC2. Can didate a will be anneated to		mathematical form, spelling, punctuation or grammar.
QwC2: Candidates will be expected to		OR
or steps		Evident weakness in organisation of material but using
AND		acceptable mathematical form, and with few if any
 make few if any mistakes in mathematical form, 		errors in spelling, punctuation and grammar.
spelling, punctuation and grammar and include units		
in their final answer		QWC0. Evident weakness in organisation of material
QWC1: Candidates will be expected to		and errors in use of mathematical form, spelling,
• present work clearly, with words explaining process		punctuation and grammar
OR OR		
• make few if any mistakes in mathematical form,		
spelling, punctuation and grammar and include units		
in their final answer	6	
6 3700	R1	For the evaluation of a correct 2% OR Sight of 1.02
74	DI	(222 and 3922 imply use of 3×74 and gain B1)
3774		(and 5,22 mpr) use of 5 () and gain D1)
75.48	M1	For attempting to find 3 different 2%
3849.48		OR 3700×1.02^3 .
76.98(96)		
3926.46(96)	A1	Or sight of (£)74 AND (£)75.48 AND (£)76.98()
(£) 3926.47 OR 392647(p)	A1	F.T. one error.
		Accept £3926.47p. Do not accept 3926.47p.
		Mark final value of investment
		(i.e. do not penalise if they continue to give £226.47)
	4	

GCSE Mathematics - Unitised	Mark	Final Mark	Scheme	
Unit I Higher Tier November 2014	M1		ents	
/(a) Use of Distance / Time (Average grand =) 20 / 1.5	MII m1	Allow 1(n)30(m) or 1.3 or 90(1	min) etc. for this M1.	
$(\text{Average speed} -) 50 \neq 1.5$ $= 20 \text{ (mph)}$		CAO		
– 20 (mpn)	AI	C.A.O.		
(b) Correct strategy.	S 1	Shows understanding of table	values with at least two	
Two different routes shown AND a correct distance	B2	B1 for each.		
given in each case.		A-B-D-C-A = 27(miles)		
		A-C-B-D-A = 29(miles)		
		A-C-D-B-A = 27(miles)		
		A-D-B-C-A = 29 (miles)		
		A-D- C-B-A = 30 (miles)		
	6			
8. Sight of either $\pi \times 5^2$ OR $\frac{1}{2} \times 8 \times 6$	B1	$\pi \times 5^2$ must be for area of circle	e not semicircle.	
		Allow B1 for $(\pi \times 5^2)/2$ if clean	rly area of semicircle.	
(Area =) $\pi \times 5^2 - \frac{1}{2} \times 8 \times 6$	M1	Look out for M0 for $\pi \times 5^2 - (6)$	6 + 8 + 10).	
= 54.5()	Al	Accept 54 5 to 54 6 inclusive.		
m	UI	Correct units for final answer.	Independent of all other	
	4	marks.		
$9(a)$ $20^2 - 4^2 + 2 \times a \times 64$	4 D1	For correct substitution		
$5(a)$ $20^{-4} + 2 \wedge u \wedge 04$ $20^{2} + 4^{2} + (-a)$	B1	For correct substitution.		
$\frac{20-4}{2\times 64}$ (- <i>u</i>)	DI			
$= 3(ms^{-2})$	B1			
(b) $(x^2 - x^2 + 2x^2 + 2x^2) = 100 (-(10))$	M1	F.T. their acceleration from na	rt (a)	
(b) $(v =) 4 + 2 \times 3 \times 100 (= 616)$		$\Delta 0$ if 24.8 approximated to 25	and 'Ves' stated	
(v -) 24.8()(IIIS)	111	Alternative methods (Using v	= 25	
(so velocity of 25his hot reached)		$\overline{a = 25^2 - 4^2} OR \ u^2 = 25^2 - 4^2$	$2 \times 3 \times 100$ M1	
		2×100		
		= 3.045	u = 5	
		So $a = 3$ not enough. So the second	u = 4 not enough Al	
		('not enough' must be i	indicated for A1)	
		<u>Also</u> (continuing from position $\frac{Also}{(2^2-2)^2}$	reached in (a))	
		$(V =) 20 + 2 \times 3 \times 36 (= 6)$	(16) MI	
		(v =) 24.8()(ms)	Al	
	5	(so velocity of 25ms not	(reached)	
10 125% = 297(lb)	B1	Accept any indication	Alternative method	
(Initial weight =) 297×100	M1	Or equivalent $\frac{2}{2}$	297 M1	
$\frac{257}{125}$	1011	e g 297 / 1.25	2.2	
= 237.6(1b)	A1		= 135(kg) A1	
			$125\% \equiv 135$ B1 F.T.	
$\approx \underline{237.6}$ (kg) or $\underline{237.6 \times 5}$	M1	F.T. 'their 237.6'. ((Initial weight)	
2.2 11			$\underline{135} \times 100$ M1	
= 108(kg)	A1		125	
			= 108(kg) A1	
	5			

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
Unit 1 Higher Tier November 2014	Mark	Comments
11. $2 \times \underline{11}$ or equivalent.	M1	M2 for correct use of the '2' with all four of the numbers
8		11, 8, 40 and 60.
		M1 for correct use of the '2' with any two of the
$\times 40$ or equivalent	M1	numbers 11, 8, 40 and 60.
60	. 1	
= 11/6 (hrs)	AI	C.A.O. or equivalent e.g. 1.83(hrs).
= 1hrs 50min	B1	F.T. conversion from 'their 11/6' only if of equivalent difficulty (not ½ an hour). Allow 2hrs 11min or 2hrs 10min as FT from 2.18hrs.
$12 \qquad \text{Sight of 10 5(min)} \text{ AND 20 5(min)}$	4 D1	Accent 10min 20cco AND 20min 20cco for D1
12. Signt of 19.5(min) AND 20.5(min) Sight of 24 \times 60 (= 1440)(min)	D1	Accept 19min 30sec. AND 20min 30sec. for B1.
Signt 01 24 \times 60 (= 1440)(min) 24 \times 60 OP 24 \times 60	BI M1	May be implied in calculations. E.T. numerator only for $24 \times 60 \times 60 \times 60$
$\frac{24 \times 60}{10.5}$ OK $\frac{24 \times 60}{20.5}$	IVI I	F.1 numerator only for $24 \times 60 \times 60$ of 60×60 .
19.3 20.3		F.1. If least $19 \le l < 20$ OK greatest $20 < l \le 21$.
73·8() AND 70·2()	A1	
(Greatest number =) 74 AND (Least number =) 71	A1	F.T. 'their 73.8' AND 'their 70.2' rounded up.
		A0 for 73 and 70 (First capsule not considered).
	5	
13(a) $\underline{\theta} \times \pi \times 20^2 - \underline{\theta} \times \pi \times 7^2 = 199 \cdot 1$	M1	
360 360		
$(\theta =) \underline{199 \cdot 1 \times 360}$	ml	Or equivalent.
$\pi imes (20^2 - 7^2)$		
= 65(°)	A1	SC1 for 57(°)
(b) Sight of $\underline{65} \times 2 \times \pi \times 20$ OR $\underline{65} \times 2 \times \pi \times 7$	MI	F1 their 65' for all 4 marks
360 360		
	A 1	$A_{1} = 1226(1) = 170(1)$
$= 22.7 \qquad \text{OR} = 7.9$	AI	Accept $22.6()$ and $7.9()$.
(Parimeter -) 22.7 + 7.0 + 12 + 12	M1	F T their 'arc lengths' only if the method used for
(1 crimeter -) 22 7 + 79 + 15 + 15 = 56.6(m)	A1	finding each of the arcs is correct
- 50 0(m)	7	
14 Sight of $\frac{2}{3} \times \pi \times 20^3$ or $16755(\cdot 1_{-})$ or $16000\pi/3$, B1	B0 if $\frac{2}{2} \times \pi \times 20^3$ evaluated incorrectly and used in
11 Sign of 73% R 20 of 10755 (1) of 10000 R75	DI	further work.
Sight of $\frac{1}{3} \times \pi \times 15^2 \times h$	B1	'h' clearly being the height of the cone.
		May be written as $(20 - d)$. Do not penalise lack of
		hrackets at this stage
		or denets at this stage.
$\frac{1}{3} \times \pi \times 15^2 \times h = \frac{9}{40} \times \frac{2}{3} \times \pi \times 20^3$	M1	F T 'their cone vol ' = $9/40 \times$ 'their hemisphere vol '
		For M1.
		$(1.h.s. = 235 \cdot 6 \times h$ r.h.s. = 3769 · 9 or 3770).
		Allow MI only if $(20 - d)$ is used without
		acknowledgement of the brackets
$(20 - d=)$ or $(h =)$ $9 \times 2 \times \pi \times 20^3 \times 3$ or equivalent.	A1	$(3770 \div 235.6)$
$40 \times 3 \times \pi \times 15^2$		
= 16(cm)	A1	
(d =) 4(cm)	A1	F.T. $20 - $ 'their 16' if M1 gained.
	6	

1. (a) (i) three hundred and forty six thousand, one hundred (i) 42604B1 B1 B1 B1 (d) 57B1 B1 B1 B1 B2(a) 57(e) 1, 3, 5, 15B1 (f) 56 (g) 6 × 20 (-) 120B1 M1 M2B1 B1 B1 B1 Accept 6 × 21 or 6 × 22 126, 132(i) 56 (g) 6 × 20 (-) 120B1 (f) 56 (g) 6 × 20 (-) 120B1 M1 M2 Accept 6 × 21 or 6 × 22 126, 1322. (a) perpendicular (i) straight line touching circumference (ii) straight line touching circumference (ii) straight line touching circumference (ii) (x =) 33 (ii) (x =) 33 (ii) (x =) 9B1 <br< th=""><th>GCSE Mathematics - Unitised</th><th>Mark</th><th>Final Mark Scheme</th></br<>	GCSE Mathematics - Unitised	Mark	Final Mark Scheme
1. (a) (i) three hundred and forty six thousand, one hundred (ii) 42604 (b) 1122 (c) 32 (p) (d) 57 (e) 1, 3, 5, 15B1 C) C) C) Correct and no incorrect factors OR 3 correct and no more than 1 incorrect OR 3 correct and no more than 1 incorrect B1 <br< th=""><th>Foundation Tier November 2014</th><th>Main</th><th>Comments</th></br<>	Foundation Tier November 2014	Main	Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 (a) (i) three hundred and forty six thousand one hundred	B1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii) 42604	B1	
(c) 32 (p) (d) 57 (e) 1, 3, 5, 15B1 B1 B1 B1 B2B1 for any 2 correct and no incorrect factors OR 3 correct and no more than 1 incorrect OR all 4 correct and 1 incorrect(f) 56 (g) 6×20 (=) 120B1 M1 Accept 6×21 or 6×22 126, 132 M0 A0 for $6 \times 21 \cdot 8 = 130.8$ 2. (a) perpendicular (ii) straight line drawn joining 2 points on circumference passing through centre (c)B1 B1 B1 B1 B1(b) (i) straight line drawn joining 2 points on circumference (c)B1 B1<	(h) 1122	B1	
(d) 57 (d) 57 (e) 1, 3, 5, 15B1 (f) 56 (g) 6×20 (=) 120B1 for any 2 correct and no incorrect factors OR 3 correct and no more than 1 incorrect OR all 4 correct and 1 incorrect OR all 4 correct and 1 incorrect OR all 4 correct and 1 incorrect (f) 56 (g) 6×20 (=) 120B1 B2 B1 M1 Accept 6×21 or 6×22 126, 132 M0 A0 for $6 \times 21 \cdot 8 = 130.8$ 2. (a) perpendicular (ii) straight line drawn joining 2 points on circumference passing through centre (ii) straight line touching circumferenceB1 B1 B1 B1 B1(c) -15 (c) (i) ($x = 33$ (ii) ($x = 100$ B1 <br< td=""><td>(0) 1122 (c) 32 (n)</td><td>B1</td><td></td></br<>	(0) 1122 (c) 32 (n)	B1	
$\begin{array}{c} (e) 1, 3, 5, 15 \\ (f) 56 \\ (g) 6 \times 20 \\ (e) 120 \\ \end{array} \qquad \begin{array}{c} B1 \\ M1 \\ Accept 6 \times 21 \text{ or } 6 \times 22 \\ 126, 132 \\ M0 \ A0 \ for \ 6 \times 21 \cdot 8 = 130.8 \\ \end{array} \qquad \begin{array}{c} Ccept 6 \times 21 \cdot 6 \times 22 \\ 126, 132 \\ M0 \ A0 \ for \ 6 \times 21 \cdot 8 = 130.8 \\ \end{array}$	(c) 52 (p) (d) 57	B1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(a) 57 (e) 1 3 5 15	B2	B1 for any 2 correct and no
InterviewInterview(f) 56 (g) 6×20 (=) 120B1 M1 Accept 6×21 or 6×22 126, 132 M0 A0 for $6 \times 21 \cdot 8 = 130.8$ 2. (a) perpendicular (b) (i) straight line drawn joining 2 points on circumference (c) ii) straight line touching circumference (c) ii) straight line touching circumference 		02	incorrect factors
(f) 56 (g) 6×20 (=) 120B1 M1 			OR 3 correct and no more than
(f) 56 (g) 6×20 (=) 120OR all 4 correct and 1 incorrect10B1 M1 A12. (a) perpendicularB1 (b) (i) straight line drawn joining 2 points on circumference passing through centre (ii) straight line touching circumferenceB1 B1(c)Image: Correct and 1 incorrectB1 B1(c)Image: Correct and 1 incorrectB1 B1(c)Image: Correct and 1 incorrectB1 B1 B1(c)Image: Correct and 1 incorrectB1 B1 B1(c)Image: Correct and 1 incorrectB1 <br< td=""><td></td><td></td><td>1 incorrect</td></br<>			1 incorrect
(f) 56 (g) 6×20 (=) 120B1 M1 A1Accept 6×21 or 6×22 126, 132 M0 A0 for $6 \times 21 \cdot 8 = 130.8$ 2. (a) perpendicular (b) (i) straight line drawn joining 2 points on circumference passing through centre (ii) straight line touching circumferenceB1 B1 B1 B1 B1(c) 4 3.(a) 38 (ii) (x =) 130 (iii) (x =) 100 (iii) $4x = 36$ (x =) 9B1 <b< td=""><td></td><td></td><td>OR all 4 correct and 1 incorrect</td></b<>			OR all 4 correct and 1 incorrect
(i) 30 31 Accept 6×21 or 6×22 (i)(i) 120 102. (a) perpendicular10(b) (i) straight line drawn joining 2 points on circumferenceB1(ii) straight line touching circumferenceB1(c)1(c)1(c)1(d)15(e)1(ii) $(x =) 33$ (iii) $(x =) 100$ (iii) $(x =) 100$ (iii) $(x =) 9$ (b) $10/127$ (c)<	(f) 56	B1	one un reonicer und rinconcer
(g) $0 \times 10^{\circ}$ (a) 120 (b) 120° (c) 120° (c) 120° (c) 126° (c) 126° (c) 126° (c) 126° (c) 128° (c) 1	(r) 50 $(g) 6 \times 20$	M1	Accept 6×21 or 6×22
Image: 100 model100 model2. (a) perpendicular10(b) (i) straight line drawn joining 2 points on circumference passing through centreB1(c)Intention of one horizontal line of the correct length in the correct position(c)Intention of one horizontal line 	$(g) 0 \times 20$ (=) 120	A1	126 132
10102. (a) perpendicularB1(b) (i) straight line drawn joining 2 points on circumference passing through centreB1(ii) straight line touching circumferenceB1(c)Constant(c)Constant <t< td=""><td>()120</td><td></td><td>$M_0 = 120, 132$ M0 A0 for 6 × 21.8 = 130.8</td></t<>	()120		$M_0 = 120, 132$ M0 A0 for 6 × 21.8 = 130.8
2. (a) perpendicularB1(b) (i) straight line drawn joining 2 points on circumference passing through centre (ii) straight line touching circumferenceB1(c)Constant(c)Const		10	
(b) (i) straight line drawn joining 2 points on circumference passing through centre (ii) straight line touching circumferenceB1(c)G(c)G <td>2. (a) perpendicular</td> <td>B1</td> <td></td>	2. (a) perpendicular	B1	
(b) (i) straight line drawn joining 2 points on circumference passing through centre (ii) straight line touching circumferenceB1(c)B1(c)Intention of one horizontal line of the correct length in the correct position3.(a) 38 (b) - 15 (c) (i) (x =) 33 (ii) (x =) 100 (iii) 4x = 36 (x =) 9B1 B			
passing through centre (ii) straight line touching circumferenceB1(c)B1B1Intention of one horizontal line of the correct length in the correct position3.(a) 38B1(b) - 15B1(c) (i) (x =) 33B1(ii) (x =) 100B1(iii) (x =) 100B1(iii) (x =) 9B1(a) likelyB1(b) 10/127B1(c) 6 triangles shadedB15. (1000 ÷ 200) 5 (packets)B1 $5 \times (£)3.50$ B1(£) 17.50A13FT 'their 5' if 1000+200 or equivalent seen.	(b) (i) straight line drawn joining 2 points on circumference	B1	
(ii) straight line touching circumferenceB1(c)Intention of one horizontal line of the correct length in the correct position3.(a) 38B1(b) - 15B1(c) (i) (x =) 33B1(ii) (x=) 100B1(iii) 4x = 36B1(x =) 9B1B1FT $x = 'their 36'/4$ Do not accept a final answer of 36/4.4.(a) likelyB1(b) 10/127B1(c) 6 triangles shadedB15. (1000 + 200) 5 (packets)B1 $5 \times (f_{3}).50$ (f) 17.50B1M1FT 'their 5' if 1000+200 or equivalent seen.	passing through centre		
(c)B1Intention of one horizontal line of the correct length in the correct position3.(a) 38 (b) - 15 (c) (i) (x =) 33 (ii) (x=) 100 (iii) $4x = 36$ (x =) 9B1 B1	(ii) straight line touching circumference	B1	
B1Intention of one horizontal line of the correct length in the correct position3.(a) 38 (b) - 15 (c) (i) (x =) 33 (ii) (x=) 100 (x =) 9B1 <td></td> <td>DI</td> <td></td>		DI	
of the correct length in the correct position3.(a) 38 (b) - 15 (c) (i) (x =) 33 		BI	Intention of one horizontal line
3.(a) 38 $B1$ B1 (b) - 15 $B1$ B1 			of the correct length in the
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			correct position
3.(a) 38 B1 (b) - 15 B1 (c) (i) (x =) 33 B1 (ii) (x=) 100 B1 (iii) 4x = 36 B1 (x =) 9 B1 B1 B1 B1 B1 B1 B1 C(x =) 9 B1 B1 B1 B1 B1 B1 B1 C(x =) 9 B1 B1 B1 B1 B1 B1 B1 B1 B1 (c) 6 triangles shaded B1 5. (1000 ÷ 200) 5 (packets) B1 $5 \times (\pounds 3.50$ M1 (\pounds 17.50 A1		4	
(b) - 15 B1 (c) (i) (x =) 33 B1 (ii) (x=) 100 B1 (iii) 4x = 36 B1 (x =) 9 B1 B1 B1 (b) 10/127 B1 (c) 6 triangles shaded B1 3 3 5. (1000 ÷ 200) 5 (packets) B1 $5 \times (\pounds 3.50$ B1 (f) 17.50 A1	3.(a) 38	B1	
(c) (i) (x =) 33 (ii) (x =) 100 (iii) $4x = 36$ (x =) 9B1 B1 B1 B1 B1Accept embedded answersB1 B1 B1 B1FT $x = `their 36'/4$ Do not accept a final answer of $36/4$.B1 <td>(b) - 15</td> <td>B1</td> <td></td>	(b) - 15	B1	
(ii) $(x=) 100$ B1 (iii) $4x = 36$ B1 $(x =) 9$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 Constant B1 B1 B1 Constant B1 B1 B1 Constant B1 B1 B1 Constant B1 Standard B1 <td>(c) (i) (x =) 33</td> <td>B1</td> <td>Accept embedded answers</td>	(c) (i) (x =) 33	B1	Accept embedded answers
(iii) $4x = 36$ B1 $(x =) 9$ B1B1B1B1B1B1B1B1B1(b) 10/127B1(c) 6 triangles shadedB1335. (1000 ÷ 200) 5 (packets)B1 $5 \times (\pounds) 3.50$ M1(£) 17.50A1	(ii) $(x=)$ 100	B1	_
$(x =) 9$ $B1$ $FT x = 'their 36'/4$ $Do not accept a final answer of 36/4.$ 6 $4.(a) likely$ $(b) 10/127$ $(c) 6 triangles shaded$ $B1$ $B1$ $B1$ 3 $5. (1000 \div 200) 5 (packets)$ $5 \times (f.)3.50$ $(f.) 17.50$ $B1$ $M1$ $FT 'their 5' if 1000 \div 200 \text{ or equivalent seen.}$	(iii) $4x = 36$	B1	
d.(a) likely (b) 10/127 (c) 6 triangles shadedB1 B1 	(x =) 9	B1	FT $x = \text{'their } 36^{\prime}/4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Do not accept a final answer of
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			36/4.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.(a) likely	B1	
(c) 6 triangles shaded B1 3 3 5. (1000 ÷ 200) 5 (packets) $5 \times (\pounds)3.50$ B1 (\pounds) 17.50 M1 FT 'their 5' if 1000÷200 or equivalent seen.	(b) 10/127	B1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(c) 6 triangles shaded		
$\begin{array}{c c} 5. (1000 \pm 200) & 5 \text{ (packets)} \\ 5 \times (\pounds) 3.50 \\ (\pounds) 17.50 \end{array} \qquad \qquad \begin{array}{c c} B1 \\ M1 \\ A1 \\ a \end{array} FT \text{ 'their 5' if 1000 \div 200 or equivalent seen.} \\ \end{array}$	$5(1000 \div 200) = 5(markata)$	5	
$ \begin{array}{c c} 3 \times (2)3.50 \\ (\pounds) 17.50 \end{array} \qquad \qquad \begin{array}{c c} 171 \\ A1 \\ 3 \end{array} \qquad \begin{array}{c c} 171 \\ equivalent seen. \end{array} $	$5.(1000 \div 200) = 5 \text{ (packets)}$	M1	ET 'their 5' if $1000 \cdot 200 \text{ or}$
$\begin{vmatrix} (L) 1/.50 \\ 2 \end{vmatrix} = \begin{bmatrix} A_1 \\ 2 \end{bmatrix} = \begin{bmatrix} equivalent seen. \\ 2 \end{bmatrix}$	$5 \times (L) 5.50$		r_1 upped r_2 in 1000 \pm 200 01
		3	

UNIT 2 - FOUNDATION TIER

GCSE Mathematics - Unitised Unit 2 (non calculator) Foundation Tier November 2014	Mark	Final Mark Scheme Comments
 6. 6:38 (pm. Put in oven.) 7:13 (pm. Remove from oven and stir. Replace in oven.) 7:28 (pm. Remove from oven.) (7:30 pm. Serve) 	B1 B1 B1	Do not penalise additional time added for removing from oven, stirring etc <i>Alternative method:</i> <i>Times given with gaps of</i> <i>35 minutes B1</i> <i>15 minutes B1</i> <i>2 minutes AND finish at 7:30 pm B1</i>
QWC: Look for • relevance of work shown	QWC 2	
• generally correct spelling		
• clarity of text explanation		
• correct use of notation for time		QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling
QWC2: Candidates will be expected to		punctuation and grammar.
• present work clearly, with words explaining process or steps		
e.g. show calculations with times given in the question AND		
• make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their working		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form applying punctuation or grammar
(include p.m. and = when appropriate)		OR ovident weeknesses in organisation of
QWC1: Candidates will be expected to		material but using acceptable
• present work clearly, with words explaining process or steps		errors in spelling, punctuation and grammar.
OR		QWC0 Evident weaknesses in
• make few if any mistakes in		use of mathematical form, spelling,
mathematical form, spelling, punctuation and grammar, and include units in their working.	5	Final unsupported statements only gets QWC0

GCSE Mathematics - Unitised		Final Mark Schome
Unit 2 (non calculator)	Mark	Comments
Foundation Tier November 2014		
7. Pencil 40p or $(f)(0).40$	B1	
Biro $60p \text{ or } (f)(0).60$	B1	FT 'their pencil'
Ruler 80p or $(\pounds)(0).80$	B1	FT 'their pencil and biro'
Rubber 25p or $(\pounds)(0).25$	B1	FT 'their pencil and biro and
		ruler'
	4	
8. Attempt to set up list of all ordered pairs, possibly given as a	M1	At least 4 ordered pairs needed.
list or in a table.		Ordered pairs:
		3,3 3,5 3,7
× 3 5 7		5,3 5,5 5,7
3 9 15 21		7,3 7,5 7,7
5 15 25 35		
7 21 35 49		
All nine possible correct scores, including repeated values	. 1	
OR all nine ordered pairs with no incorrect scores	AI	
(P(16 < score < 36) =) 5/9	4.2	ET 'their table on list of 0 seenes'
	AZ	F1 their table of list of 9 scores
		Otherwise ET for maximum of:
		A1 for a numerator of 5 in a
		fraction less than 1
		A 1 for a denominator of θ in a
		fraction less than 1
		Do not penalise incorrect
		reduction of fractions from a ET
		NB Penalise -1 for use of words
		such as $(5 \text{ out of } 0)$, $(5 \text{ in } 0)$ or
		'5.0'
		When both fraction and wrong
		notation seen DO NOT penalise
		wrong notation
	4	
9 ($\angle ACB = 180 - 136 =$) $AA(^{\circ})$	B1	
9. $(\angle ACD - 180 - 130 -)$ 44()	M1	FT 'their 44'
$(x =) 180 - 2 \times 44$ OR $(x =) 136 - 44$	A1	
$(x =) 92(^{\circ})$	3	
$10.(\pounds)5.10 - 2\frac{1}{2} \times (\pounds)1.20$	MI	Complete method
$(\pounds)2.10$	Al	
$210 \div 30 \text{ OR } 2.1(0) \div 0.3(0)$	MI	F1 their $(\pm)2.10^{\prime}$
7 (oranges)	Al	
	4	
(a) 11. Correct reflection	B2	BI for a reflection in any
		horizontal line or in $x = 3$ or sight
		of the line $y = 3$
	2	

GCSE Mathematics - Unitised Unit 2 (non calculator)	Mark	rk Final Mark Scheme	
Foundation Tier November 2014		Comments	
12. <u>Basic Membership</u> (Total cost for basic membership =) $10 \times (\pounds)32 + (\pounds)4 \times 2 \times 52$ or equivalent (Total cost for basic membership =) (\pounds)736	M1 A1	A complete correct method Correct total for basic membership If no marks for 'basic membership calculation', award for SC1 for sight of $(12 \times (\pounds)32 + (\pounds)4 \times 2 \times 52 =)$ (£)800 OR award SC1 for $(10 \times (\pounds)32 + (\pounds)4 \times 52 =)$ (£)528	
(Total cost for elite membership =) $12 \times [(\pounds)60 - 0.1 \times (\pounds)60]$ or equivalent (Total cost for elite membership =) (\pounds)648	M1 A1	A complete correct method Correct total for elite membership SC1 for sight of (£)54 or (£)72 if 2 nd M0A0	
Conclusion that Elite Membership is cheaper AND by (£)88	B1	FT only if both M marks were awarded OR if first SC and second M marks were awarded.	
$13.6 \times \frac{3}{4}$ (= 18/4)	M1	Accept $\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4}$	
$4 \frac{1}{2} (kg)$ (Requires 2 × 2(kg) tins and 1× $\frac{1}{2} (kg)$ tin) (2 × (£)5.20 + 1 × (£)1.70)	A1		
(£)12.10	A1 3	FT 'their 4 ¹ / ₂ ' provided of equivalent difficulty If no marks, award SC1 for at least two correct costings of combinations (with at least 1 involving 2 or 3 sizes of tin and at least 1 involving a multiple).	
14. (a) $7n - 2$	B2	B1 for $7n \pm \dots$ or equivalent.	
(b) $20x^5$	B2 4	B1 for $20x^m$ or nx^5 where <i>m</i> is an integer and $m \neq 0$ or 1; <i>n</i> is an integer and $n \neq 0$.	
15. (a) 108/360 or equivalent (e.g. 3/10)	B2	B1 for numerator of 108 or denominator of 360 in a fraction < 1 Mark final answer.	
(b) Sight of $1 - 3/10$ (= 7/10) or equivalent	M1	FT 'their $3/10$ ' (but not for an answer of $1/2$).	
$7/10 \times 720$	m1		
504	A1	If 0 marks, SC1 for sight of 216. <i>Alternative method:</i> <i>3/10 × 720 (=216) M1 FT 'their 3/10'</i> <i>720 – 216 m1</i> <i>504 A1</i>	

UNIT 2 - HIGHER TIER

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
(b) 1. Correct reflection	B2	B1 for a reflection in any horizontal line or in $x = 3$
		or sight of the line $y = 3$
2. <u>Basic Membership</u> (Total cost for basic membership =) $10 \times (\pounds)32 + (\pounds)4 \times 2 \times 52$ or equivalent (Total cost for basic membership =) (\pounds)736 <u>Elite Membership</u> (Total cost for elite membership =) $12 \times [(\pounds)60 - 0.1 \times (\pounds)60]$ or equivalent (Total cost for elite membership =) (\pounds)648 Conclusion that Elite Membership is cheaper AND by (£)88 Look for	2 M1 A1 M1 A1 B1 Q	or sight of the line $y = 3$ A complete correct method. Correct total for basic membership. If no marks for 'basic membership calculation', award for SC1 for sight of $(12 \times (\pounds)32 + (\pounds)4 \times 2 \times 52 =)$ (£)800 OR award SC1 for $(10 \times (\pounds)32 + (\pounds)4 \times 52 =)$ (£)528 A complete correct method. Correct total for elite membership. SC1 for sight of (£)54 or (£)72 if 2 nd M0A0. FT only if both M marks were awarded OR if first SC and second M marks were awarded.
 relevance spelling in at least 1 statement/sentence clarity of text explanations, the use of notation (watch for the use of '=', £, % being appropriate) A clear conclusion statement must be made before QWC2 can be awarded. Count incorrect use of '=' in situations such as '4 × 2 × 52 = 416 + 320' within the 'few errors in mathematical form' QWC2: Candidates will be expected to present work clearly, with words explaining process or steps AND make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units (£) in their final answer QWC1: Candidates will be expected to present work clearly, with words explaining process or steps AND make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units (£) in their final answer 	W C 2 7	 QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. A final unsupported statement only gets QWC0.
(c) 3. $(a =) 63$ (°) (b =) 117 (°)	B1 B1 2	FT 180 - 'their <i>a</i> '.

GCSE Mathematics - Unitised Unit 2 Higher Tier November 2014	Mark	Final Mark Scheme Comments
4. $6 \times \frac{3}{4} (= 18/4)$	M1	Accept $\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4}$.
$\begin{array}{l} 4 \frac{1}{2} (\text{kg}) (\text{Requires } 2 \times 2 \text{ (kg) tins and } 1 \times \frac{1}{2} \text{ (kg) tin}) \\ (2 \times (\pounds) 5.20 + 1 \times (\pounds) 1.70 =) (\pounds) 12.10 \end{array}$	A1 A1	FT 'their 4 ¹ / ₂ ' provided of equivalent difficulty.
	3	If no marks, award SC1 for at least two correct costings of combinations (with at least 1 involving 2 or 3 sizes of tin and at least 1 involving a multiple).
5 [4x + 12 + 5x - 10 + x + 18 + 00](%) = 260(%)	M1	Using the angle sum of a quadrilateral. Accept informal notation
$\begin{array}{c} \text{S.} [4x + 12 + 5x - 10 + x + 18 + 90]() - 360() \\ \text{OR} [4x + 12 + 5x - 10 + x + 18](^{\circ}) = 270(^{\circ}) \end{array}$		throughout.
$10x = 250(^{\circ})$ $x = 25(^{\circ})$	A1 A1	FT until 2^{nd} error provided M1 awarded. If M0, award SC1 for $x = 7(^{\circ})$ (from equating angle total to 180°) or for $x = 34(^{\circ})$ (from omitting 90° from angle total).
Attempt to substitute into either $4x + 12$ or $5x - 10$ (Largest angle =) $115(^{\circ})$	M1 A1 5	Either appropriate substitution attempted. FT 'their x '. All substitutions must be correctly evaluated for the final mark.
6. (a) (i) $2p < -7$	M1	Collecting terms.
$p < -7/2$ or $p < -3\frac{1}{2}$ or $p < -3.5$	A1	M0A0 for use of = sign, unless replaced by $<$ ISW
(ii) – 4	B1	FT 'their (i)' (for a negative answer only).
(b) $15x + 10 - 8x + 20$	B1	Correctly expanding both brackets.
7x + 30	B1	FT from 3 correct terms. Mark final answer.
(c) 100	B1 6	Accept 100/1
7. (a) 108/360 or equivalent (e.g. 3/10)	B2	B1 for numerator of 108 or denominator of 360 (or 180) in a fraction < 1. Mark final answer.
(b) Sight of $1 - 3/10$ (= 7/10) or equivalent 7/10 × 720	M1 m1	FT 'their 3/10' (but not for an answer of 1/2).
504	A1	Do not accept 504/720. If no marks, SC1 for sight of 216.
	5	Alternative method: 3/10 × 720 (=216) M1 FT 'their 3/10' 720 - 216 m1 504 A1
8. (a) 7 <i>n</i> –2	B2	B1 for $7n (\pm)$ or equivalent.
(b) $(n+1)^2 + 2$ or equivalent	B3	B2 for $(n + 1)^2 +$ OR for $(n + k)^2 + 2$, $k \neq 0$ B1 for $(n + k)^2$, $k \neq 0$ OR for $n^2 + 2$ (or B1 for each correct term in $n^2 + 2n + 3$, within a quadratic with more than one term)
9. Method to find the first variable	 M1	Allow one slip but not in equated variable
Correct first variable	A1	The set of pour not in equation furthere.
Method to find the second variable	ml	FT their first variable.
	4	(x = 3, y = -1) An unsupported answer gets 0 marks.
10. 1 320 000 ÷ 400	M1	Or equivalent.
$3\cdot3 \times 10^3$	A2	A1 for equivalent correct answer, not given in standard form, e.g. 3300 or 0.33×10^4 OR A1 for $a \times 10^n$ (with $3 < a < 4$ and <i>n</i> a positive integer) following through from 'their 3300'.
	3	

GCSE Mathematics - Unitised Unit 2 Higher Tier November 2014	Mark	Final Mark Scheme Comments
11 (a) $10x^2 + 5xy - 4xy - 2y^2$	B1	
$10x^2 + xy - 2y^2$ or equivalent	B1	FT from 3 correct terms.
(b) $2(2x-1) + 3 = x - 5$	M2	M1 for correctly cleared fractions by a valid method for any 2
		terms.
3x = -6	A1	Collecting terms. FT provided at least M1 awarded.
x = -2	A1	
	6	
12.		Check diagram.
Angle BAD = $180(^{\circ}) - 2x(^{\circ})$ (angles in an isosceles triangle)	B1	Allow first B1 without a full reason.
Angle BCD = $180(^{\circ})$ – Angle BAD OR $180(^{\circ})$ – $[180(^{\circ})$ –	B1	Second B1 is for clear use of cyclic quadrilateral.
$2x(^{0})$		
(y) = 2x(3)	BI	Indication of correct circle theorem in words.
(opposite angles in a cyclic quadrilateral add up to 180(*))	2	
	3	
13. (a) 6	В3	B2 for $((1/25)^2 =) 5$
		OR B2 for $1 + (1/5)^2$ or $1 + 25^2$ or $1 + \sqrt{25}$ or $1 + 1/0.2$
		B1 for $(4^{\circ} =)$ 1 OR for $(1/5)^{-1}$ or 25 ² or $\sqrt{25}$
(b) $(\sqrt{(16 \times 2)} - \sqrt{2})^2$ or $32 - \sqrt{32}\sqrt{2} - \sqrt{32}\sqrt{2} + 2$	M1	RHS method needs 3 of 4 terms correct accept $\sqrt{64}$ as $\sqrt{32}\sqrt{2}$
$(0) (((10 \times 2) (12))) = 0$ or middle term = + 8 + 8	M1	
(5.72) or initiate term $\pm 0 \pm 0$ 18 and rational	Al	
	6	
14. (a) sight of $5/12 \times 1/11$ OR $1/12 \times 5/11$	M1	
$5/12 \times 1/11 + 1/12 \times 5/11$ OR $5/12 \times 1/11 \times 2$	M1	Complete correct method.
= 10/132 (= 5/66)	A1	ISW
		,
(b) $1 - P(\text{no red ball})$ OR other <u>complete</u> method	S1	P(RR) + P(RR) + P(R'R)
		or $P(RR) + P(RW) + P(WR) + P(RG) + P(GR)$
1 7/12 (/11	1.41	or correct numerical equivalent.
$= 1 - \frac{1}{12} \times \frac{6}{11}$	MI	Calculations snowing correct sum of products of probabilities
(-1 - 42/152) - 00/132 (-15/22)	A 1	(without repracement).
= 70/152(-15/22)	6	15 W
15. Reflection in y axis	B1	Clear intention shown.
Curve passes through (0, 4) AND (-3, 0)	B1	Co-ordinates need not be stated.
	2	

UNIT 3 - FOUNDATION TIER

GCSE Mathematics - Unitised		Final Mark Scheme
Unit 3 (calculator allowed) Foundation Tier November 2014	Mark	Comments
1. (a) $(\pounds) 8.5(0)$	B1	
	B1	
(£)23·85	B1	
(£) 9·98	B1	FT candidate's values, provided equivalent difficulty
(£)42·33	B1	FT 50 – 'their 42·33'.
(b) $(f) 7.67$	B1	Or equivalent
(c) 6×1.99	B1 7	SC1 for $(9 \times 1.99 =)(\pounds) 17.91$
(t) 11.94	/ D1	
2. (a) 53000	DI B1	
(b) 67	B1	
(c) 37.8	3	
	5	
3. 42-(38-12)	M1	Or equivalent
	A1	
16	2	
4. (6435-5793)= 642 (units used)	B1	
	M1	FT 'their 642' from working
$642 \times 15(p)$	Al	If given, £ and/or p must be correct
$(\pm)96\cdot3(0) \text{ or } 9630(p)$	3	
5 Evidence of counting squares		
48-32 (squares) 240, 260 (m ²)	AI B1	ET 5x 'their number of squares'
240-200 (m)	3	1.1. 5 ~ then number of squares
6. (a) A and L OR F and J	B1	
(b) H and C	B1	
	2	
7. (a) (i) any correct combination using 5, 3, 12 and 20.	B1	5+3 = 20 - 12
		12+5=20-3
		12+3 = 20-5
		Accept answers in boxes or on lines
(11) any correct combination	B1	$20 \div 5 = 12 \div 3$ or $5 \div 3 = 20 \div 12$ (incl reciprocals)
		Accept answers in boxes or on lines
(b) (i) 11	B1	
(i) (i)	B1	A pair of brackets inserted correctly around subtraction
	21	Extra brackets accepted if correct. Eg. $(4 \times 9) \div (3-1)$
(c) $-10 + -5$	B1	Select the two negative numbers.
(d) -4×-6	B1	In any order
	6	

GCSE Mathematics - Unitised Unit 3 (calculator allowed) Foundation Tier November 2014	Mark	Final Mark Scheme Comments
8. Choosing a combination of 4 and 6 to make 16. 4, 4, 4, 4 or 6, 6, 4	B1	Alternative method Cost of 1 bottle from 6-bottle pack = $(\pounds)4\cdot 30 \div 6 =$
Correct costing for one combination (£) 12 or (£) 11.6(0) (£) 11.6(0) and a convincing argument that 6, 6, 4 is cheapest	B1 B1	(£)0·71(6). Cost of 1 bottle from 4-bottle pack = (£)0·75. B1 for both. B1 for "Buy 2 6-bottle packs + 1 4 6-bottle pack". B1 for correct total price (£) $11 \cdot 6(0)$
(£) 11.6(0)		
Look for Spelling 	QWC 2	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
• Clarity of text explanations,		
• Consistent and correct use of £ or p signs.		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar.
QWC2: Candidates will be expected to		OR Evident weekness in organisation of material but using
• Present work clearly, with words explaining process and steps		acceptable mathematical form, with few, if any, errors in spelling, punctuation and grammar.
AND		QWC0 Evident weakness in organisation of material, and
• Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer.		and grammar.
QWC1 : Candidates will be expected to		
• Present work clearly, with words explaining process or steps	5	
OR		
• Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer.		
9. A: 12 ('sides') (36÷12=) 3(cm)	B1 B1	Attempt to find the side length of a square. FT candidate's number of 'sides' on perimeter A. No FT for 36÷5
(Perimeter B= 10×3) 30 (cm)	B1 3	FT $10 \times \text{times}$ 'their 3' If no marks awarded, SC1 for B has perimeter of 10 'sides'.
10. (a) 18	B1	
(b) $120=45+5Y$ 5 $Y=75$	B1 B1	Correct substitution Isolating the V Accept $5V=120-45$
Y=15	B1	F.T if $aY=b$ ($a\neq 1$)
	4	

GCSE Mathematics - Unitised		Final Mark Scheme
Unit 3 (calculator allowed) Foundation Tier November 2014	Mark	Comments
11.(a) 39	B1	
(b) D 5, C 9, B 6, A 4	B2	B1 for any two/three correct frequencies
(c) 21 to 30 or C	B1	FT from their frequencies
(d) Use overlay	DI	I I nom men nequencies
3 or 4 angles correct and correctly labelled	B4	Ft from their frequencies
	OR	If only B1 is scored for the diagram and all the angles
3 or 4 angles correct, labels not fully correct	В3	given correctly, then cancel the B1 and award M1, A1.
2 angles correct and correctly labelled.	В3	If B0 scored for the diagram, check the angles and the
2 angles correct, labels not fully correct.	B2	method to see if the M1 and the A1 can be awarded.
1 angle correct and correctly labelled.	B1	(1 i c) 15° coto M1
OB	OR	(1 IS) 15° gets M1. Or SC1 for all correct nercentages 20.8 37.5 25 16.7
If 0 or 1 for the diagram or no diagram	011	
360/24	M1	
Angles are 75, 135, 90, and 60.	A1	
12.3 (or 4) area and the hisector of the angle drawn	8 B2	B1 for the first are crossing both lines (or two equal radius
12. 5 (614) ares and the disector of the angle drawn.	D2	arcs crossing both lines) and an attempt at the next stage in
		the construction.
	2	
13. (a) $45 \times 32 \times 30$		Or equivalent
cm^3	U1	Accept ml
(b) use of 1 litre = $1000 \text{ cm}^3 (\text{eg } 43\text{L} = 43000 \text{ cm}^3)$	M1	
(43litres is less than the volume of the tank)	. 1	
The water will not overflow	AI	May be implied but not stated explicitly. Eg. 200 cm ⁻ space
		FT candidate's volume of tank provided M1 awarded in
		part (a).
$14 \cdot 2/2 = 42(a - a^2 b^2) = a \cdot 1/2 = 42(a - a^2 b^2)$	5 D1	
14. $2/8$ is 48(pupils) or $\frac{1}{4}$ is 48(pupils) 48×4 or equivalent	M1	
192	Al	
	3	
15. $180 - (360/5)$ OR $((5-2) \times 180) / 5$	M1	Or equivalent
108 (°)	AI 2	
16. Area of one rectangle correctly evaluated (e.g. whole	B1	<i>Possible calculation for the white pieces:</i>
mirror)		4 corner pieces $4 \times 2 \times 2$ (assuming squares)
Area of two or more different white or black rectangles	D1	2 long rectangles $2 \times 12 \times 2$
correctly evaluated	BI	2 tall rectangles $2 \times 32 \times 2$ Centre niece 12×32
A complete method of subtracting or adding areas $\alpha \propto 800 = (2 \times 20 \times 2 + 2 \times 40 \times 2 - 4 \times 2 \times 2)$	M1	Or B1B1M1A1 for $36 \times 16=576(\text{cm}^2)$
$\begin{array}{c} \text{c.g. 800} - (2 \times 20 \times 2 + 2 \times 40 \times 2 & 4 \times 2 \times 2) \\ \text{mirror} \text{wooden strips} \qquad \text{overlap} \end{array}$		
$= 576(cm^2)$	A1	CAO
	4	
17 (a) All points plotted correctly.	B2	B1 for 3, 4 or 5 points plotted correctly, not joined, or
(b) Appropriate straight line of best fit drawn with some	R1	B1 for all points plotted correctly but joined.
values above and below the line.		Mark Intention.
(c) from their line of best fit ± 0.05 (tonnes).	B1	FT from their line. B0 if no line drawn.
	4	1

GCSE Mathematics - Unitised Unit 3 (calculator allowed)	Mark	Final Mark Scheme Comments
Foundation Tier November 2014		
18. Line or curve drawn from end of existing line to	B1	
(08:30,0).		
Straight line drawn from (08:30,0) to (08:45, 15:00).	B2	FT their first line.
		B1 for straight line drawn from (08:30,0) with correct
		gradient (Soum every Smin) but not linisning at (08.45 ± 15.00) OP
		B1 for straight line finishing at the school with correct
		gradient but not starting immediately after the first line.
	3	
19. One correct evaluation $1.5 \le x \le 1.6$	B1	$x x^3 + 10x - 20 x x^3 + 10x - 20$
2 correct evaluations $1.585 \le x \le 1.6$	B1	1.5 -1.625 1.591 -0.063
one either side of 0		1.51 -1.457 1.592 -0.045
	1.1	1.52 -1.288 1.593 -0.028
2 correct evaluations $1.585 \le x \le 1.595$	MI	1.53 - 1.118 1.594 - 0.010
one either side of 0		1.54 - 0.948 - 1.595 - 0.008
If evaluations not seen accept 'too high' or 'too low'		1.55 -0.7/6 $1.596 -0.025$
r = 1.59	A1	1.50 - 0.604 - 1.597 - 0.043
		1.57 - 0.430 - 1.598 - 0.001 1.58 - 0.256 - 1.599 - 0.078
		1.59 -0.080
		1:6 0:096
		The second B1 can be gained by calculating one value that
		is too low in the range 1.585 to 1.6 AND stating clearly
	4	that 1.6 will be too high.
20. (Distance ² =) $4 \cdot 9^2 - 4^2$	M1	
Distance ² = 8.01 OR (Distance =) $\sqrt{8.01}$	A1	
(Distance =) $2 \cdot 8(30)$ (m)	A1	
	3	
21. Sight of the mid-points 77.5, 82.5, 87.5, 92.5	B1	
$77 \cdot 5 \times 4 + 82 \cdot 5 \times 13 + 87 \cdot 5 \times 17 + 92 \cdot 5 \times 6 (=3425)$	M1	FT their mid-points from within or at the bounds of the
(310 + 10/2.5 + 148/.5 + 555)	m1	groups
= 85(.625) (yards)		
05(025) (yards)	4	

UNIT 3 - HIGHER TIER

GCSE Mathematics - Unitised	Mark	Final Mark Scheme
$\frac{1}{1} -20 + 9.8 \times 5$	M1	
= 29	A1 2	
2. All three amounts correct in comparable form e.g. 20%, 30%, 50%, OR 0.2, 0.3, 0.5 or equivalent	B2	Allow fractions of a sum of money. B1 for any 2 amounts correct in comparable form.
2:3:5	B1	
3. (a) All points plotted correctly.	B2	B1 for 3, 4 or 5 points plotted correctly, not joined, or
(b) Appropriate straight line of best fit drawn with some values above and below the line.	B1	B1 for all points plotted correctly but joined. Mark intention.
(c) from their line of best fit ± 0.05 (tonnes).	B1 4	FT from their line. B0 if no line drawn.
4. (a) Line or curve drawn from end of existing line to	B1	
(08:30,0). Straight line drawn from (08:30, 0) to (08:45, 15:00). (b) 08:45 - 08:30	B2	FT their first line. B1 for straight line drawn from (08:30,0) with correct gradient. (500m every 5min) but not finishing at (08:45, 15:00), OR B1 for straight line finishing at the school with correct gradient but not starting immediately after the first line. FT 'their 08:45'
= 15 (min)	Al	
5. $180 - (360/5)$ OR $((5-2) \times 180) / 5$	5 M1	Or equivalent
108 (°)	A1 2	
6. Suitable arcs drawn for 60° angle.	M1	Allow $\pm 2^{\circ}$ for the 60° angle, ± 2 mm for all lengths.
Correct arcs drawn from the ends of the 10cm and 6cm lines.	B1	
Lines of length 7cm and 4cm joining to complete the quadrilateral	B1	Only award this B1 for the quadrilateral shown
	4	
7.Area of one rectangle correctly evaluated (e.g. whole mirror) Area of two or more different white or black rectangles correctly evaluated	B1 B1	Possible calculation for the white pieces: 4 corner pieces 4×2×2 (assuming squares) 2 long rectangles 2×12×2 2 tall rectangles 2×32×2 Centre piece 12×32
A complete method of subtracting or adding areas e.g. $800 - (2 \times 20 \times 2 + 2 \times 40 \times 2 - 4 \times 2 \times 2)$	M1	$OR B1B1M1A1 \text{ for } 36 \times 16 = 576(cm^2)$
mirror wooden strips overlap $= 576(\text{cm}^2)$	A1	САО
QWC:		
 correct units used i.e. cm² correct use of mathematical notation e.g. +, -,=. spelling in at least 1 statement/sentence clarity of text explanations 		QWC2 Presents material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
 QWC2: Candidates will be expected to present work clearly, with words or quantities shown for clarity of process or steps 	QWC 2	QWC1 Presents material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using
 AND make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer 		acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
 QWC1: Candidates will be expected to present work clearly, with words or quantities shown for clarity of process or steps OR 		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
 make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer 	6	

GCSE Mathematics - Unitised Unit 3 Higher Tier November 2014	Mark	Final Mark Scheme
8 (a) 2.4 or 22/5	B1	
(b) $8x - 20 = 3x - 5$	B1	FT until 2 nd error.
5x = 15	B1	
x = 3	B1	
		$x x^3 + 10x - 20$ $x x^3 + 10x - 20$
(c) One correct evaluation $1.5 \le x \le 1.6$	B1	1.5 -1.625 1.591 -0.063
		1 51 _1 457 1 592 _0 045
2 correct evaluations $1.585 \le x \le 1.6$	B1	1.51 1.457 1.552 0.045
one either side of 0		1.52 -1.288 1.593 -0.028
	241	1.53 -1.118 1.594 -0.010
2 correct evaluations $1.585 \le x \le 1.595$	MI	1.54 -0.948 1.595 0.008
one either side of 0		1.55 -0.776 1.596 0.025
If evaluations not seen accept 'too high' or 'too low'		1 56 -0 604 1 597 0 043
x = 1.59	A1	
		1.57 -0.450 1.558 0.001
		1.58 -0.256 1.599 0.078
		1.59 -0.080
		1.6 0.096
		The 2 nd B1 can be gained by calculating a value that is too low in
	0	the range 1.585 to 1.6 AND stating clearly that 1.6 will be too
	8	high.
9. (First 2000 units cost) 13766(p) OR (£)137.66	B1	
(Remaining 16000 units $\cos(t) 47792(p)$ OK $(t)477.92$	ы	
1.05 × 61558 OR 1.05 x 615.58	M1	FT provided at least B1 awarded and both amounts considered.
(Total cost including VAT =) 64635.9(p) OR (£) 646.359	A1	Accept rounded or truncated answer, to nearest penny.
Monthly payment = \pounds 53.86	A1	Must be correct to nearest penny.
	5	
10. (Distance ² =) $4.9^2 - 4^2$	M1	
Distance ² = 8.01 OR (Distance =) $\sqrt{8.01}$	Al	
(Distance =) = 2.8(30) (m)		
11 Sight of the mid-points 77 5 82 5 87 5 92 5	B1	
$77.5 \times 4 + 82.5 \times 13 + 87.5 \times 17 + 92.5 \times 6$ (=3425)	M1	FT their mid-points from within or at the bounds of the groups.
(310 + 1072.5 + 1487.5 + 555)		
÷ 40	m1	
= 85(.625) (yards)	A1	
$12 \ 12/top72^{\circ}$	4 M2	M1 for $tan 72^{\circ} - 12/y$
= 3.8(990)	A1	$\frac{1}{101} \frac{1}{101} \frac{1}$
AC = 7.79(80) OR 7.8	A1	Only accept 8 from correct working
	4	
13. Correct numerical representation of the numbers involved	B1	Accept correct representation of one of the numbers.
e.g. 500,000,000,000 or 5 x 10 ¹¹ or 500 x 10 ⁹		
Multiplication using the correct numbers $1.5 - 10^{23}$	M1	
$= 1.5 \times 10^{-5}$	AI	If no marks gained, SUI for an answer expressed in standard form following through from their consistent representation of each
	3	number
14. OA=OC (or OA=OD) and OB=OD (or OB=OC) (all radii)	M2	M1 for one correct statement. These may be seen on the diagram.
AND angle AOB = angle COD (vertically opposite angles)		
		<i>One alternative method: M2 angle BAO = angle DCO and angle</i>
		ABO = angle CDO (angles in the same segment) AND AO = OC
		(both radii). M1 for 1 pair of equal angles and equal radii.
(Therefore the triangles are congruent) SAS	Al	A1 for triangles are congruent (AAS).
$15(a) 3a^2(3ab+2)$	3	B1 for $3a^2(3ab + 1) \cap \mathbb{R} 3a^2(-+2) \cap \mathbb{P}$ for correct partial
15. (a) 5a (5a0 + 2)	D2	factorisation.
(b) $(x + 10)(x - 2)$	M2	M1 for $(x10)(x2)$
x = -10 AND $x = 2$	A1	FT their brackets, providing M1 awarded
	5	
16. (Volume of cube =) 343 (cm^3)	B1	Accept sight of 343 in working.
(Volume of a sphere =) $4/3 \times \pi \times 1.5^{\circ}$	M1	
$= 14.13 \text{ to } 14.14 \text{ (cm}^3)$	Al	ET their values provided first M1 swarded
(waximum number of spheres =) 343/14.1 24		F 1 uter values provided first M1 awarded.
- 24	5	

GCSE Mathematics - Unitised Unit 3 Higher Tier November 2014	Mark	Final Mark Scheme
17. (PO =) $(12.6/\sin 44) \times \sin 28$	M2	M1 for $PO/sin28 = 12.6/sin44$ or equivalent
(PQ =) 8.5(154) (cm)	A1	
	3	
18. Volume scale factor = $3510/130$	M1	
= 27	A1	
Length scale factor = 3	M1	FT cube root of their 27 provided M1 awarded.
Height of water = $12/3$ = 4 (cm)	A1	
		Alternative:
		$M2$ for $h^3 = 12^3 \times 130/3510$. M1 for $(h/12)^3 = 130/3510$ or
		equivalent.
	4	$ml \text{ for } h = \sqrt[3]{12^3 \times \frac{130}{3510}}$. Al for 4(cm).
19. (a) $5(x + 1) + 4(x - 2)$ as numerator AND $(x - 2)(x + 1)$ as	M2	Brackets required or implied later.
denominator		M1 for either correct numerator or denominator, or multiply
OR multiply throughout by $(x - 2)$ and $(x + 1)$		throughout with 1 error.
5(x + 1) + 4(x - 2) = 2(x - 2)(x + 1)	Al	
0 = 2X - 11X - 1	AI M1	Allow one error in sign or substitution, but not in the formula
(b) $x = \frac{11 \pm \sqrt{(-11)^{-4} \times 2 \times (-1)}}{2 \times 2}$	IVI I	Anow one error, in sign of substitution, but not in the formula
$11 \pm \sqrt{129}$	A1	CAO
$x = \frac{4}{4}$		
x = 5.59 and $x = -0.09$ (Answers to 2 d.p.)	A1	CAO
	7 	
20. (a) Uniform scale on the vertical axis starting at 0 in	BI	
blocks of 0.5.	D1	ET their seels for all remaining marks provided not frequencies
Appropriate width bars of neight 1.4, 2.0, 2.	D2	r i then scale for an remaining marks provided not nequencies
		B1 for 2 correct hars or B1 for sight of correct frequency densities
		stated.
(b) 6	B1	
	4	
21. a) Tangent drawn at $x = 1$.	S1	Alternative method: M1 for $(dy/dx) = 4x$
Idea of increase in y /increase in x .	M1	A1 for 4×1
Gradient from a reasonable tangent.	A1	Al for 4
(b) Split into 3 areas and attempt to sum	M1	
$(\text{Area} =) \frac{1}{2} \times 1(3 + 2 \times 5 + 2 \times 11 + 21)$	M1	Or equivalent. Award for up to 1 error in reading scale.
$= 28 \text{ (units}^2)$	Al	CAO
	6	

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>