GCSE MARKING SCHEME

METHODS IN MATHEMATICS (LINKED PAIR PILOT)

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCSE METHODS IN MATHEMATICS (LINKED PAIR PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Unit 1 - Foundation Tier 1
Unit 1 - Higher Tier 5
Unit 2 - Foundation Tier 9
Unit 2 - Higher Tier 13

UNIT 1 (FOUNDATION TIER)

Methods in Mathematics June 2014 Unit 1 Foundation Tier	Mark	Comments
1. (a) (i) 19004 (ii) five hundred and fifty thousand (b) (i) 380 (ii) 16 (iii) 54 (iv) 13 (c) (i) 2190 (ii) 54000	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
2.	B4	B1 for each correct answer
3. Right angle $90\left({ }^{\circ}\right)$ Obtuse angle Greater than $90\left({ }^{\circ}\right)$ AND less than $180\left({ }^{\circ}\right)$	$\begin{gathered} \hline \text { B1 } \\ \text { E1 } \\ \text { B1 } \\ \text { E1 } \\ 4 \end{gathered}$	Accept $90\left({ }^{\circ}\right)-180\left({ }^{\circ}\right.$, between $90\left({ }^{\circ}\right)$ and $180\left({ }^{\circ}\right.$)
4. 1st Diagram $\begin{gathered}\text { Circle }: 4 \\ \text { Square : } 5\end{gathered}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
$2^{\text {nd }}$ Diagram Right Hand Circle $: 7$ Square $:-15$ Bottom Circle $:-18$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT from a negative answer in the square
(b)(i) 48 (ii) 8 (iii) 4	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & 8 \\ & \hline \end{aligned}$	Accept embedded answer

Methods in Mathematics June 2014 Unit 1 Foundation Tier		Mark	Comments
9. (a) $8 x$ (b) $-2 a+9 b$ (c) -25 (d) $6 x y+14 x$ (e) $5 \mathrm{a}(2 \mathrm{~b}-5)$		$\begin{aligned} & \text { B1 } \\ & \text { B2 } \\ & 9 \end{aligned}$	Must be in an expression, B1 for sight of either $-2 a$ or $9 b$. Mark final answer. B1 for either -40 or 15 Must be in an expression, B1 for sight of either $6 x y$ or $14 x$ B1 for $5 a(\ldots-5)$ or $5 a(2 b-\ldots$. or correct partial factorisation
$\begin{aligned} & 10 \text { (a)(i) } 1-(0.2+0.15+0.25) \\ & 0.4 \end{aligned}$ (ii) Red and Yellow (b) 0.3		M1 A1 B1 B1 4	Allow intention of brackets. $(1-0.42=) 0.58 \text { gets } S C 1$ If answer of 0.4 in table and contradicted in answer space then SC1 FT from their (a)(i) provided it is ≤ 0.2 and $\neq 0$
11		B4	B1 for each correct entry
Three times a number \boldsymbol{c}	3 c		
Add 3 to a number c and then multiply this total by 6	$6(c+3)$		
Three times a number c and then add 6	$3 c+6$		
Add 3 to a number c and then divide this total by 6	$\frac{c+3}{6}$	4	
12. (a) Square or rectangle or isosceles trapezium (b) Parallelogram or rhombus or rectangle (c)(i) $(-5,4)$ (ii) $(5,-4)$		$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	
13a) Multiples of 7 b) 28 and 35 placed correctly		$\begin{gathered} \hline \text { B1 } \\ \text { B2 } \\ 3 \\ \hline \end{gathered}$	B1 for either
14. $360 \div 9$... X ... has 40 sides $360 \div(180-120)$ OR equivalent full method $\ldots \text { Y ... has } 6 \text { sides }$		M1 A1 M1 A1 4	An unsupported answer is awarded M1, A1 e.g. looking at matching a multiple of 180 with a multiple of 120: 180360540720900 120240360480600720 An unsupported answer is awarded M1, A1
15. Interpretation that 36 cm is 8 parts$\begin{aligned} & 3 \times 36 \div 8+36 \quad \text { OR }(3+8) \times 36 \div 8 \\ & 49.5(\mathrm{~cm}) \text { or } 491 / 2(\mathrm{~cm}) \end{aligned}$		$\begin{gathered} \mathrm{S} 1 \\ \mathrm{M} 1 \\ \\ \text { A1 } \\ 3 \end{gathered}$	Or sight of $36 \div 8$ or $36 / 8$ or 4.5 Full method to calculate AC. FT their miscalculated $36 \div 8$, not for $36 \div 11$ CAO. Do not accept $50(\mathrm{~cm})$, unless 49.5 seen

UNIT 1 (HIGHER TIER)

Methods Unit 1 Higher Tier June 2014						Mark	Comment
$\text { 1. } \begin{aligned} & a=52^{\circ} \\ & b=128^{\circ} \\ & c=128^{\circ} \\ & d=40^{\circ} \\ & e=88^{\circ} \end{aligned}$						$\begin{gathered} \text { B1 } \\ \hline 5 \end{gathered}$	FT their $b=c$ FT 92 - their a, or their $\mathrm{b}-88$, or their $\mathrm{c}-88$, or $128-$ their e
2. Considering all possible outcomes, e.g. use of twoway table, or showing all possible totals, or (Game card A) 6 possible (ways or outcomes) AND (Game card B) 16 possible (ways or outcomes)						B3	Accept $6 / 25$ and $16 / 25$. No extra outcomes should be included, e.g. including numbers not on the spinners If card A list complete, accept stopping listing card B possibilities as soon as >6 possible ways
Example:							indicated correctly.
1	2	3	4	5	6		B2 for at least 1 possible outcome indicated for
2	3	4	5	6	7		each of the 4 numbers on card A AND at least 2
3	4	5	6	7	8		possible outcomes indicated for each of the 4
4	5	6	7	8	9		numbers on card B, OR for all possible outcomes
5	6	7	8	9	10		for card B
							B1 for 1 way of scoring a number on card A AND 2 ways for a number on card B, OR all outcomes for card A
Conclusion, game card B has the better chance						E1	The conclusion must be based on working, i.e. provided at least B2 previously awarded
Look for: - clear organisation, ordered lists or tables - labels linking working and game cards - clear explanation in a conclusion - if used, correct notation for probability						$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.

QWC2: Candidates will be expected to

- present work clearly, with words explaining process or steps
AND
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer

QWC1: Candidates will be expected to

- present work clearly, with words explaining process or steps
OR
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer
3.(a) 18 or equivalent
(b) 12 or equivalent
(c) 9
(d) Numerator $0.06(0)$ or 1 correct step in calculation Multiplying numerator and denominator by suitable multiple of 10 - for eliminating decimals, or correct (FT) evaluation as a decimal

$$
1 / 1000
$$

QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
OR
evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.

QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.

B1 Accept a product of factors
B1 Accept a product of factors
B2 B1 for sight of 3 , or $1 / 4+23 / 4$, or $0.25+2.75$
B1
B1
FT depending on their numerator.

These $1^{\text {st }} 2$ B marks are interchangeable A final answer of 0.001 is awarded B1, B1, B0
B1 CAO
(Example: 0.60/60 $=0.01$ or $1 / 100$ or $6 / 600$ is awarded B0, B1, BO
$60 / 600$ as a $1^{\text {st }}$ stage is awarded BO, BO, BO

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4. (a) Square or rectangle or isosceles trapezium \\
(b) Parallelogram or rhombus or rectangle \\
(c)(i) \((-5,4)\) \\
(ii) \((5,-4)\)
\end{tabular} \& B1
B1
B1
B1
4 \& \\
\hline \begin{tabular}{l}
\begin{tabular}{rlrl}
5.(a) \(\mathrm{h}+4\) \& \(=5 \mathrm{e}\) \& or \& \(-5 \mathrm{e}=-4-\mathrm{h}\) \\
\(\mathrm{e}=\frac{\mathrm{h}+4}{5}\) \& or \& \(\mathrm{e}=\frac{-4-\mathrm{h}}{-5}\)
\end{tabular} \\
(b) (i) 9 \\
(ii) 6 \\
(iii) 3
\end{tabular} \& B1
B1

B1
B1
B1
5 \& FT until $2^{\text {nd }}$ error
(e.g. $4 h=5 e$ leading to $4 h / 5=e$ is awarded BO, B1)

\hline | 6.(a) False with valid general reason, OR a correct general statement without selection of false |
| :--- |
| (b) True with valid general reason, OR a correct general statement without selection of true | \& E2 \& | For example 'false, there is always 1 and the number itself', or 'false, as they have exactly two factors' |
| :--- |
| E1 for sight of at least 2 prime numbers, with no errors in choice of primes, and a list of the factors of at least 2 prime numbers |
| Penalise incorrect reference to factors -1 |
| Choice TRUE but correct general statement allow SC1 |
| For example 'the square root is a factor times by itself, (other factors are in pairs)' |
| E1 for evidence of working with at least 2 square numbers, with no errors in choice of square numbers leading to |
| - correct factors |
| OR |
| - statement of the correct number of factors |
| OR |
| - 1 of each (1 example of factors and 1 example of number of factors) |
| Choice FALSE but correct general statement allow SC1 |

\hline | 7. $360 \div 9$ $\ldots \text { X } \ldots \text { has } \mathbf{4 0} \text { sides }$ |
| :--- |
| $360 \div(180-120)$ OR equivalent full method working with interior angles $\text { ... Y ... has } 6 \text { sides }$ | \& M1

A1
M1

A1

4 \& | An unsupported answer is awarded M1, A1 |
| :--- |
| An unsupported answer is awarded M1, A1 |

\hline 8. Interpretation that 36 cm is 8 parts

$$
\begin{aligned}
& 3 \times 36 \div 8+36 \quad \text { OR }(3+8) \times 36 \div 8 \\
& 49.5(\mathrm{~cm}) \text { or } 491 / 2(\mathrm{~cm})
\end{aligned}
$$ \& S1

M1

A1

3 \& | Or sight of $36 \div 8$ or $36 / 8$ or 4.5 |
| :--- |
| Full method to calculate AC. FT their miscalculated $36 \div 8$, not for $36 \div 11$ CAO. Do not accept $50(\mathrm{~cm})$, unless 49.5 seen |

\hline | $\text { 9.(a) } 6$ |
| :--- |
| (b) $0.1212 \ldots$ or 0.12 |
| (c) $1 / 40$ | \& B2

B2
B2

6 \& | B1 for sight of 4×6 or $4 \times 2 \times 3$ or $2^{3} \times 3$ |
| :--- |
| OR for sight of 144 . Not for 2×12, this is B0 |
| B1 for 0.12 or $0.12 \ldots$ or 0.12 as an answer or seen in working |
| B1 for sight of $25 / 1000$ or equivalent unsimplified fraction |

\hline
\end{tabular}

10.(a)(i) $4 n+3$ (ii) $-2 n+74$ (iii) $n^{2}-8$ (b) $3 \times 20^{2}+4$ $=1204$	$\begin{gathered} \text { B2 } \\ \text { B2 } \\ \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ 8 \end{gathered}$	B1 for 4n B1 for $-2 n$. Allow SC1 for $2 \mathrm{n}+74$ B1 for n^{2}, not an^{2} where $a \neq 1$, OR B1 for sight of second differences 2 Must clearly be 20^{2} not $(3 \times 20)^{2}$ CAO
$\text { 11.(a) } 2 \times 10^{10}$ (b) 7.3×10^{9}	B2 B2	B1 for 20×10^{9} or 0.2×10^{11} or similar attempt at standard form B0 for 20000000000 B1 for $10^{8}(5+6.8 \times 10)$ or 73×10^{8} or 0.73×10^{10} or similar attempt at standard form B0 for 7300000000 If no marks in (a) \& (b) then SC1 for both answers correct but not in standard form
12.(a) (i) $6 x(2 x+3 y)$ (ii) $(x+10)(x-10)$ (b) $\begin{aligned} (\mathrm{x}+2)(\mathrm{x}-7) & (=0) \\ & \mathrm{x}=-2 \text { and } \mathrm{x}=7 \end{aligned}$	$\begin{gathered} \text { B2 } \\ \\ \text { B1 } \\ \text { B2 } \\ \text { B1 } \\ 6 \end{gathered}$	B1 for a correct partially factorised expression, OR for sight of $6 \mathrm{x}(2 \mathrm{x} \ldots)$ or $6 \mathrm{x}(\ldots+3 \mathrm{y})$ B1 for ($\mathrm{x} . . .2$)(x ... 7) Must be from factorised expression or equation FT from their pair of brackets
13.(a) Explains parallel with intersection y-axis at 3 , e.g. 'same gradient with intersection at $(\mathrm{y}=)_{3}$ ' (b) Reflection (in x-axis) or perpendicular (through the origin) or change the sign of the y-coordinate	E1	Must imply parallel and mention (vertical) translation Allow 'put the line up another 3 squares' Do not accept ' $\mathrm{m}=1, \mathrm{c}=3$ ' unless related to $\mathrm{y}=\mathrm{x}$, Accept use of knowledge ' $\mathrm{m} \times-1 / \mathrm{m}=-1$ ', or ${ }^{\prime} \mathrm{m}_{1} \times \mathrm{m}_{2}=-1$ ' Do not accept 'diagonally downwards', 'opposite (direction)', or 'reversed (direction)', or 'swap the coordinates' Allow 'same but decreasing instead of increasing (as it is minus)', 'rotate 90° (about the origin)', 'change the sign of one of the coordinates'
14.(a) $0.35 \quad 0.8 \quad 0.2 \quad 0.8$ on the correct branches (b) 0.65×0.2 $=0.13$	$\begin{gathered} \hline \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	B1 for any two correct entries. Accept fractions
15.(a) Correct region shaded (b) Correct region shaded (c) Correct region shaded	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	Union of A and B All shaded except the intersection of A with B All except the non overlap region of A
16. (a) $37\left({ }^{\circ}\right)$ Alternate segment theorem and isosceles triangle (b) $55\left({ }^{\circ}\right)$ (Isosceles triangle,) angle at centre twice angle at circumference	$\begin{gathered} \text { B1 } \\ \text { E1 } \\ \text { B1 } \\ \text { E1 } \\ 4 \\ \hline \end{gathered}$	The E1 mark depends on the B1 or sight of a correct method. For E marks: Do not accept calculation Or equivalent. Or equivalent.
$\begin{gathered} 17.30 \times 70=35 \times \mathrm{AC} \text { OR } 30 \times(30+40)=35 \times \mathrm{AC} \\ \mathrm{AC}=60(\mathrm{~cm}) \\ \mathrm{AB}=60-35 \\ =25(\mathrm{~cm}) \end{gathered}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	May be within a calculation towards AB directly May be implied in further working FT for their AC provided M1 awarded

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
18.(a)(i) Sketch of \(\mathrm{y}=\mathrm{x}^{2}\) symmetrical passing through the origin \\
(ii) Sketch of \(\mathrm{y}=1 / \mathrm{x}\) in appropriate 2 quadrants with axes as asymptotes \\
(b) Sketch of \(y=2^{x}\) through \((0,1)\), with 1 indicated on the \(y\)-axis or coordinate \((0,1)\) given
\end{tabular} \& B1
B2

B2

5 \& | Mark intention to be symmetrical passing through the origin |
| :--- |
| B1 for sketch in 1 quadrant with axes as asymptotes, or for 2 curves appropriately in both quadrants but not clearly with intention of axes as asymptotes |
| B1 for general shape, towards zero gradient for greater negative values of x , and rising for greater positive values of x, clearly through a point on positive y-axis |

\hline | 19.Substitution of (2, 26), |
| :--- |
| e.g. sight of $26=\mathrm{k} \times 2^{2}+3 \times 2$ $\mathrm{k}=5$ |
| Equating $y=0$, e.g. sight of $0=k x^{2}+3 x$ $\begin{gathered} x(5 x+3)=0 \\ (0,0) \quad \text { or } \quad x=0 \end{gathered}$ $(-3 / 5,0) \text { or } x=-3 / 5 \text { or equivalents }$ | \& M1

A1
M1
m1
A1
A1

6 \& | FT their k with $\mathrm{k} \neq 0$, including ' k ' |
| :--- |
| Extracting common factor, accept $\mathrm{x}(\mathrm{kx}+3)=0$ |
| Must be from correct working |
| Accept $x=-3 / k$. Not dependent on $m 1$ |

\hline | 20.(a) $(x+7)^{2}+4$ |
| :--- |
| (b) Attempt to use common denominator $\begin{aligned} & \frac{4(3 x+2)-5(5 x-2)+14}{(20)} \text { or equivalent } \\ & \frac{12 x+8-25 x+10+14}{20} \text { or equivalent } \\ & =\frac{32-13 x}{20} \end{aligned}$ | \& B2

B1
M2
A1

A1

7 \& | B1 for $\mathrm{a}=(+) 7$, B 1 for $\mathrm{b}=4$, only award B2 for $(x+7)^{2}+4$ |
| :--- |
| e.g. allow sight of all 3 fractions denominator 20 without change to numerators |
| M1 for 2 of the three terms correct. |
| May be expressed as separate fractions, or working without consideration of the denominator |
| Convincing step. FT from 1 error, i.e. M1. |
| Must be clearly implying +10 term rather than -10 from notation |
| Denominator must be seen |
| Must follow from correct working |

\hline $$
\begin{aligned}
& \text { 21.Sight of } \mathrm{P}\left(\mathrm{~A}^{\prime}\right)=0.6 \\
& 0.6 \times x=0.48 \text { OR } x=0.48 / 0.6 \\
& x=0.8
\end{aligned}
$$ \& B1

M1

A1
3 \& FT their 1-0.4 incorrectly evaluated for M1 only, do not FT 0.4 for $\mathrm{P}\left(\mathrm{A}^{\prime}\right)$
CAO

\hline
\end{tabular}

UNIT 2 (FOUNDATION TIER)

Methods in Mathematics June 2014 Unit 2 Foundation Tier	Mark	Comments
5. Lisa's ingredients $\times 10$	M1	Or equivalent
2000 (g of flour) OR 2 kg	A1	Attempt at least one of the three ingredients All 3 correct
10 (teaspoons of mustard)		
500 (g of butter)		
Neil's ingredients $\times 5$	M1	Or equivalent
		Attempt at least one of the three ingredients
5 (teaspoons of salt)	A1	All 3 correct
$500 \text { (g of cheese) }$		
Look for:		
Correct use of Units		
Labels		
QWC2: Candidates will be expected to - present relevant work clearly, with words explaining process or steps AND - make few if any mistakes in spelling, punctuation and grammar QWC1: Candidates will be expected to - present work clearly which is mostly relevant, with words explaining process or steps OR - make few if any mistakes in spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
6. (a) $67 / 100 \times 234$	M1	Or equivalent
=(£) 156.78	A1	
(b) $2 / 11 \times 242$	M1	Or equivalent
$=44$ (g)	A1	
(c) For 2 correct in a form which allows	B1	
For all 3 correct in a form which allows	B1	Eg $114=25 \%=0.25$
$24 \%, 1 / 4,0.3$	$\begin{gathered} \text { B1 } \\ 7 \end{gathered}$	
		Or equivalent Answer only gets B0, B0, B1

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Methods in Mathematics \\
June 2014 Unit 2 Foundation Tier
\end{tabular} \& Mark \& Comments \\
\hline \[
\text { 7. (a) } 20 / 4 \text { or } 5 \mathrm{~cm} \text { } \begin{aligned}
\& 5 \times 5 \\
\& 25 \\
\& \mathrm{~cm}^{2}
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{B} 1 \\
\text { M1 } \\
\text { A1 } \\
\text { U1 }
\end{gathered}
\] \& Independent of other marks \\
\hline \[
\begin{aligned}
\& \text { (b) }(0.6 \times 1.1) / 2 \mathrm{OR}(60 \times 110) / 2 \\
\& 0.33\left(\mathrm{~m}^{2}\right)
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A2 }
\end{gathered}
\] \& A1 for \(3300\left(\mathrm{~cm}^{2}\right)\) or \(0.66 / 2\) or \(0.3 \times 1.1\) or \(0.6 \times 0.55\) \\
\hline \[
\begin{aligned}
\& \text { (c) } 4 \times 4 \times 4 \\
\& 64\left(\mathrm{~cm}^{3}\right) \\
\& 64 /(8 \times 4) \quad \text { or } \quad 32 \mathrm{~h}=64 \\
\& 2(\mathrm{~cm})
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& Alternative method: \\
\hline \begin{tabular}{l}
(d) \(2 \pi \times 20\) or \(\pi \times 40\) \\
\(125.6(637 \ldots \mathrm{~cm})\) to \(125.7(2 \ldots \mathrm{~cm})\)
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
13
\end{gathered}
\] \& Accept 126 \\
\hline \begin{tabular}{l}
8. (a) \(x=23\) \\
(b) \(x=4\) \\
(c) \(y=72\) \\
(d) \(4 \mathrm{a}=39-3\) \(a=9\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
5 \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
Allow embedded answers in all parts \\
FT 1 error
\end{tabular} \\
\hline 9. (a) Listing multiples of 0.3 or 0.4 , including at least one between 8 and 9 .
\[
8.4
\] \& S1
B1 \& \begin{tabular}{l}
OR listing multiples of 3 or 4 including at least one between 80 and 90 with the intention to then insert the decimal point. \\
Award S1B1 for unsupported 8.4
\end{tabular} \\
\hline (b) \(11.008854 \ldots\)... 11.01 \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \\
\hline (c) 3000 \& B1 \& \\
\hline (d) 0.063 \& B1 \& \\
\hline 10. Shape completed accurately with correct rotation seen \& B3 \& With no other \(90^{\circ}\) rotations shown B2 for at least two lines correct in attempting to complete the shape with correct rotation of their shape with no other \(90^{\circ}\) rotations shown, OR B1 for the shape completed correctly, or a correct rotation of the part of the shape given, ignore other \(90^{\circ}\) rotations shown \\
\hline \& \& Accept embedded answers in part (a) \\
\hline (a) \(18 \mathrm{x}-102=42 \quad\) OR \(3 x-17=\) \& B1 \& \\
\hline 42/6 \& B1 \& FT from 1 error \\
\hline \[
18 x=144 \quad 3 x=24
\] \& B1 \& FT until \(2^{\text {nd }}\) error \\
\hline (b) \(9 x<77-5\) \(x<8\) \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l}
No marks for use of " \(=\) ", unless finally replaced to give \(\mathrm{x}<8\) then award M1 A1. \\
SC1 for \(\mathrm{x}<82 / 9\) ISW
\end{tabular} \\
\hline \& M1 \& \\
\hline (c) \(x+2 x+3 x=180\) \& A1 \& \\
\hline \begin{tabular}{l}
\[
x=30
\] \\
Three angles are \(30\left({ }^{\circ}\right), 60\left({ }^{\circ}\right), 90\left({ }^{\circ}\right)\)
\end{tabular} \& A1

8 \& SC1 for the answers of $30\left({ }^{\circ}\right), 60\left({ }^{\circ}\right)$ and $90\left({ }^{\circ}\right)$ without forming an equation SC1 for the answers of $60\left({ }^{\circ}\right), 120\left({ }^{\circ}\right)$ and $180\left({ }^{\circ}\right)$ from equating to 360

\hline
\end{tabular}

Methods in Mathematics June 2014 Unit 2 Foundation Tier	Mark	Comments		
12(a) Correct translation	B1	B2		
(b) Correct rotation	B2	B1 near miss of grid lines, or for clockwise 90° about $(-2,-1)$, or for anticlockwise 90° about $(-1,-2)$ B1 for a reflection in $y=-x$, OR for sight of the line $y=x$		
(c) Correct reflection in $y=x$			\quad	5
:---				

UNIT 2 HIGHER

Methods in Mathematics June 2014 Unit 2 Higher Tier	Mark	Comment
1. Shape completed accurately with correct rotation seen	B3	With no other 90° rotations shown B2 for at least two lines correct in attempting to complete the shape with correct rotation of their shape with no other 90° rotations shown, OR B1 for the shape completed correctly, or a correct rotation of the part of the shape given, ignore other 90° rotations shown
2. (a) $(x=) 10 \times 8 / 5$ $x=16$ (b) $(x=) 4$ (c) $18 x-102=42$ $18 x=144$ (d) $9 x<77-5$ $x<8$ (e) $x<85 / 5$ or $x<17$	M1 A1 B1 B1 B1 B1 M1 A1 M1 A1 10	Accept embedded answers in parts (a), (b) \& (c) Mark final answer. Do not accept 28/7 FT until $2^{\text {nd }}$ error No marks for use of "=", unless finally replaced to give $\mathrm{x}<8$ then award M1 A1. SC1 for $\mathrm{x}<82 / 9$ ISW Or sight of $5 \times 16=80$ with $5 \times 17=85$ Accept unsupported 16, or a unique answer of 16 from a trial and improvement method. Do not accept $\mathrm{x}<16$. SC1 for sight of $5 x=85, x=17$ followed by selecting $x=16$
3(a) $100 \times 34 / 6800$ or $100 \times 34 \div 6800$ $0.5(\%)$ or $1 / 2(\%)$ (b) 1.0225×34000 or $34000+34000 \times 2.25 / 100$ or $102.25 \times 34000 / 100$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \end{gathered}$	Accept 0.25 written as $1 / 4$
$\begin{aligned} & \text { (c) } 0.26 \times 1345 \text { or } 3 / 8 \times 600 \text { or } 0.045 \times 3600 \text { or equivalent } \\ & 349.7(\mathrm{~m}) \\ & 225(\mathrm{~m}) \\ & 160230350 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Any one correct calculation shown Accept 349 or 350 Accept 230 Accept 160 Must all be 2 significant figures FT provided at least 2 of the A marks awarded
$\text { (d) } \begin{aligned} & 450 \times 4 \div 9 \\ &=200 \end{aligned}$	M1 A1	Complete method CAO
$450 \times 4 \div 5$ $=360$ Difference 160	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & 14 \end{aligned}$	Complete method CAO Depend on both M marks

Methods in Mathematics June 2014 Unit 2 Higher Tier	Mark	Comment
$\begin{aligned} & \text { 4.(Area of faces are) } 2 e \times 3 e, 2 e \times 4 e, 3 e \times 4 e,\left(\mathrm{~cm}^{2}\right) \\ & (2 e \times 3 e, 2 e \times 4 e, 3 e \times 4 e)\left(\mathrm{cm}^{2}\right) \end{aligned}$	M2	M1 for any one of the 3 unique expressions These marks may be implied by correct simplified expressions
(Simplified equation for the total surface area is) $52 e^{2}=468$	A2	FT for M2 or M1 as appropriate, provided their simplified sum includes at least two of the expressions $6 e^{2}, 8 e^{2}, 12 e^{2}$ and all three terms in the form $\mathrm{a} e^{2}$. A1 for (2x) $\left[6 e^{2}+8 e^{2}+12 e^{2}\right]$ OR $52 e^{2}\left(\mathrm{~cm}^{2}\right)$ A1 for $e^{2}=468$
$\begin{aligned} e^{2} & =468 / 52 \quad(=9) \\ e & =3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT 'their equation' if in the form $\mathrm{a}^{2}=468$ FT 'their equation' if in the form $\mathrm{a} e^{2}=468$
$($ Volume $=6 \times 9 \times 12=) 648\left(\mathrm{~cm}^{3}\right)$	B1	FT 'their e ' within $24 \times e^{3}$ correctly evaluated
Look for: - if units given, are they correct? - notation	QWC	If no marks, then allow SC2 for $3 e \times 4 e \times 2 e=468$ leading to an answer of $e=2.69 \ldots$ or 2.7 , or SC1 for sight of $3 e \times 4 e \times 2 e=468$ or equivalent
- labels and joining text	2	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps		form, and with few if any errors in spelling, punctuation and grammar.
AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps		evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	9	QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
5. $26.5-26.5 \times 0.12 \quad$ OR 26.5×0.88 (=23.3(2)	M1	OR M2 for $26.5 \times 0.88 \times 0.92$
$\begin{array}{r} 23.3(2)-23.3(2) \times 0.08 \text { OR } 23.3(2) \times 0.92 \\ (=21.4544 \text { or } 21.436) \end{array}$	M1	FT 'their 23.32 ', but not 26.5
$25.3-21.4544(=3.8456)$ OR $25.3-21.436(=3.864)$	m1	Depends on both previous M marks FT for their 23(.32) and their 21(...)
$3.8\left(\ldots .{ }^{\circ} \mathrm{C}\right)$ to $3.9\left({ }^{\circ} \mathrm{C}\right)$ from correct working	$\begin{gathered} \mathrm{A} 1 \\ 4 \end{gathered}$	Accept $4\left({ }^{\circ} \mathrm{C}\right)$ from correct working
6. Sight of any quotient using values from the table for a / b or b / a	M1	Or sight of 1 correct response, or answers reversed
$\mathrm{a}=2.5 \times \mathrm{b}$	A1	Or equivalent
$\mathrm{b}=0.4 \times \mathrm{a}$	$\begin{gathered} \text { A1 } \\ 3 \end{gathered}$	Or equivalent FT from $\mathrm{a}=0.4 \times \mathrm{b}$ to give $\mathrm{b}=2.5 \times \mathrm{a}$
7.(a) 5.6×10^{-5} (b) 2.3×10^{9}	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ 2 \end{gathered}$	

\begin{tabular}{|c|c|c|}
\hline Methods in Mathematics June 2014 Unit 2 Higher Tier \& Mark \& Comment \\
\hline \begin{tabular}{l}
8. Idea to show or use the perpendicular height in a right angled triangle \\
Height \(=\sin 58^{\circ} \times 6\)
\[
=5(.088 \ldots \mathrm{~cm})
\]
\[
\text { Area }=5(.088 \ldots) \times 10
\]
\[
=50.9\left(\mathrm{~cm}^{2}\right) \text { or } 51\left(\mathrm{~cm}^{2}\right)
\]
\end{tabular} \& S1
M2
A1
M1

A1 \& | Award for statement such as ' $6(\mathrm{~cm}$) is not the vertical height' |
| :--- |
| M1 for $\sin 58^{\circ}=$ Height $/ 6$ |
| FT their $5(.088 \ldots \mathrm{~cm})$ provided prior M1 awarded or an attempt has been made to use a trig ratio Must be rounded. Do not accept 50.8 or 50 (from premature approximation). FT from M1 If S1 only, then use of spurious perpendicular height <6, then also award SC1 for their perpendicular height $\times 10$ correctly evaluated |
| Alternative: |
| Use of $1 / 2 a b \sin C$ |
| $2 \times 1 / 2 \times 6 \times 10 \times \sin 58^{\circ}$ |
| or M2 for $1 / 2 \times 6 \times 10 \times \sin 58^{\circ}$ |
| $50.9\left(\mathrm{~cm}^{2}\right)$ or $51\left(\mathrm{~cm}^{2}\right)$ |
| or Al for calculating $1 / 2$ required area |

\hline | 9(a) Correct translation |
| :--- |
| (b) Correct rotation |
| (c) Correct reflection in $y=x$ |
| (d) Enlargement scale factor $1 / 2$ |
| Correct position | \& B1

B2

B2
B2

B1

8 \& | B1 near miss of grid lines, or for clockwise 90° about ($-2,-1$), or for anticlockwise 90° about (-1, -2) |
| :--- |
| B1 for a reflection in $y=-x$, OR for sight of the line $y=x$ |
| B1 for any 1 line correct, or consistent incorrect fractional scale |

\hline ```
10. $26.7=\Pi \times \mathrm{d}$ or $26.7=2 \times \Pi \times \mathrm{r}$ or $\mathrm{r}=26.7 / \Pi$
Diagonal $=8.495 \ldots$ to $8.5(0 \ldots)(\mathrm{cm})$
diagonal $^{2}=$ side $^{2}+$ side 2
side $^{2}=$ diagonal $^{2} / 2$
side length $=6(.0096 \ldots \mathrm{~cm})$
Perimeter $=24 .(\ldots . \mathrm{cm})$

``` & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { B1 } \\
6 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Accept rounded or truncated FT their diagonal \\
Do not FT from inappropriate truncation or incorrect rounding (e.g. from \(\mathrm{d}=8.4\) ) Answer here for A1 should round to 6.01 FT provided both M marks awarded for \(4 \times\) 'their side length'
\end{tabular} \\
\hline \begin{tabular}{l}
11.(a)(i) \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=-\mathrm{x}\) indicated (2 quadrants for both) \\
(ii) \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=-\mathrm{x}\) or equivalent \\
(b) \(\mathrm{x}^{2}+\mathrm{y}^{2}=3^{2}\) or \(\mathrm{x}^{2}+\mathrm{y}^{2}=9\)
\end{tabular} & \begin{tabular}{l}
B2 \\
B2 \\
B1 \\
5
\end{tabular} & \begin{tabular}{l}
B1 for either indicated in 2 quadrants, or both indicated in 1 quadrant each \\
B1 for indication of appropriate points at least 3 in each of the 4 quadrants \\
Ignore any circles drawn \\
CAO. B1 for either equation \\
CAO
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 12. } \sin \mathrm{XYZ} / 23.8=\sin 123\left(^{\circ}\right) / 38.9 \\
& \sin \mathrm{XYZ}=23.8 \times \sin 123\left({ }^{\circ}\right) / 38.9 \\
& \mathrm{XYZ}=30.871 . .\left(^{\circ}\right) \text { rounded or truncated correctly }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { M1 } \\
\text { M1 } \\
\text { A1 } \\
3 \\
\hline
\end{gathered}
\] & OR 23.8/sin XYZ = 38.9/sin \(123\left({ }^{\circ}\right)\) OR \(\sin ^{-1} 0.513\)... This M1 implies previous M1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Methods in Mathematics June 2014 Unit 2 Higher Tier & Mark & Comment \\
\hline \[
\begin{array}{lc}
\text { 13. } y=4-x & \text { OR } \begin{array}{c}
x=4-y \\
2 x^{2}+x(4-x)-5=0 \\
x^{2}+4 x-5=0
\end{array} \\
\begin{array}{cc}
2(4-y)^{2}+(4-y) y-5=0 \\
(x-1)(x+5)=0 & y^{2}-12 y+27=0 \\
& \\
& \\
& \\
& \\
& \\
x=1,-3)(y-9)=0 \\
y=3, y=9 & \text { OR }
\end{array} & \begin{array}{l}
y=3, y=9 \\
x=1, x=-5
\end{array}
\end{array}
\] & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} & \begin{tabular}{l}
OR For sight of \(x^{2}+x y=4 x\) \\
OR Subtraction from \(1^{\text {st }}\) equation \\
OR \(\quad x^{2}+4 x=5\) \\
FT provided quadratic from an appropriate substitution method or subtraction method OR alternative method to solve , e.g. formula with correct substitution and \(b^{2}-4 a c\) correctly simplified \\
If A0, A0 then SC1 for \(x=1, y=3\) OR \(x=-5, y=9\) provided algebraic method shown with appropriate M1, M1, M1 marks \\
No marks for trial \& improvement methods
\end{tabular} \\
\hline \begin{tabular}{l}
14(a) 6:2 and 7:QR or equivalent, or scale factor 7/6 \(\mathrm{QR}=2 \times 7 \div 6\) or equivalent \(\mathrm{QR}=2.3(33 \ldots \mathrm{~cm})\) \\
(b)
\[
\begin{aligned}
& \mathrm{AE}=4 \mathrm{x} \\
& \mathrm{AF}=5.5 \mathrm{y} \\
& \text { (Perimeter }=) 6 \mathrm{x}+8.5 \mathrm{y} \quad \text { or } 6 \mathrm{x}+17 \mathrm{y} / 2
\end{aligned}
\]
\end{tabular} & \[
\begin{gathered}
\mathrm{B} 1 \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { B1 }
\end{gathered}
\] & \begin{tabular}{l}
OR 6:8 and 7:PR or equivalent \\
OR PR=7×8 \(\div 6(=9.33 \ldots)\) or equivalent \\
CAO. Must be simplified \\
Accept \(1 / 2(12 x+17 y)\) \\
Answers of \(4 x+5.5 y+2 x+3 y\) imply B1, B1, B0
\end{tabular} \\
\hline \[
\text { 15. } \begin{aligned}
& \mathrm{b}=45\left({ }^{\circ}\right) \\
& \mathrm{c}=180\left({ }^{\circ}\right)
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
2
\end{gathered}
\] & \\
\hline \begin{tabular}{l}
\[
\begin{gathered}
\text { 16(a) } \mathbf{H K}=\mathbf{H L}+\mathbf{L K}(=5 \mathbf{x}+6 \mathbf{y}+3 \mathbf{x}-6 \mathbf{y}) \\
\quad=8 \mathbf{x}(+0 \mathbf{y}) \\
\text { (b)(i) } \quad \begin{array}{c}
\mathbf{L N}=3 \mathbf{x}-6 \mathbf{y}+18 \mathbf{x}-36 \mathbf{y} \quad(=21 \mathbf{x}-42 \mathbf{y}) \\
\mathrm{k}
\end{array}=7
\end{gathered}
\] \\
(ii) Collinear (or lie along the same straight line)
\end{tabular} & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
5
\end{gathered}
\] & \begin{tabular}{l}
May be embedded. Award M1, A1 for sight of \(\mathrm{k}=7\) \\
Do not accept parallel as a full description
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 17. Area of the square base }=119.8-4 \times 23.6 \\
& =25.4\left(\mathrm{~cm}^{2}\right) \\
& (\text { Volume pyramid) } 76.4=1 / 3 \times 25.4 \times \text { height }
\end{aligned} \quad \begin{aligned}
& \text { height }=9.02 \ldots \mathrm{~cm} \\
& \text { (Volume cone) } 44.4=1 / 3 \times \pi \times \mathrm{r}^{2} \times \text { height } \\
& \mathrm{r}^{2}=44.4 /(1 / 3 \times \pi \times \text { height }) \\
& \mathrm{r}^{2}=(44.4 \times 1 / 3 \times 25.4) /(76.4 \times 1 / 3 \times \pi) \\
& \mathrm{r}^{2}=4.69 \ldots \text { to } 4.701 \ldots \\
& (\text { (radius }) \quad 2.17 \text { or } 2.2(\mathrm{~cm})
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1* \\
M1* \\
M1 \\
A1 \\
A1
\end{tabular} & \begin{tabular}{l}
FT their area of square base \\
Note \(\sqrt{ } 25.4=5.0398 \ldots \times 5.0398 \ldots\) \\
Depends on all previous method marks, FT their height \\
FT equivalent difficulty, isolating \(\mathrm{r}^{2}\) \\
CAO. \\
OR \(\mathrm{r}^{2}=4.7\), or an appropriate unrounded \(\mathrm{r}, \mathrm{r}=\) \\
2.1681875... to 2.17 \\
CAO. \\
Appropriate degree of accuracy required \\
Alternative for \(A 1\) *, M1* \\
Equating heights,
\[
76.4 /(1 / 3 \times 25.4)=44.4 /\left(1 / 3 \times \pi \times \mathrm{r}^{2}\right)
\] \\
For information: \\
Common height \(=9.02(\mathrm{~cm})\) \\
Height of a triangular face \(=9.37(\mathrm{~cm})\)
\end{tabular} \\
\hline
\end{tabular}

\section*{UNIT 2 (HIGHER TIER)}
\begin{tabular}{|c|c|c|}
\hline Methods in Mathematics Unit 2 Higher Tier June 2014 & Mark & Comment \\
\hline 1. Shape completed accurately with correct rotation seen & B3 & With no other \(90^{\circ}\) rotations shown B2 for at least two lines correct in attempting to complete the shape with correct rotation of their shape with no other \(90^{\circ}\) rotations shown, OR B1 for the shape completed correctly, or a correct rotation of the part of the shape given, ignore other \(90^{\circ}\) rotations shown \\
\hline \begin{tabular}{l}
2. \\
(a) \((x=) 10 \times 8 / 5\)
\[
x=16
\] \\
(b) \((x=) 4\) \\
(c) \(18 x-102=42\)
\[
18 x=144
\]
\[
\begin{array}{r}
\text { OR } \begin{array}{c}
3 x-17=42 / 6 \\
3 x=24 \text { or } x=24 / 3 \\
x=8
\end{array} \quad .
\end{array}
\] \\
(d) \(9 x<77-5\)
\[
x<8
\] \\
(e) \(x<85 / 5\) or \(x<17\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1
\[
10
\]
\end{tabular} & \begin{tabular}{l}
Accept embedded answers in parts (a), (b) \& (c) \\
Mark final answer. Do not accept 28/7 \\
FT until \(2^{\text {nd }}\) error \\
No marks for use of "=", unless finally replaced to give \(\mathrm{x}<8\) then award M1 A1. \\
SC1 for \(\mathrm{x}<82 / 9\) ISW \\
Or sight of \(5 \times 16=80\) with \(5 \times 17=85\) \\
Accept unsupported 16, or a unique answer of 16 from a trial and improvement method. Do not accept \(\mathrm{x}<16\). \\
SC1 for sight of \(5 x=85, x=17\) followed by selecting \(x=16\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 3(a) } 100 \times 34 / 6800 \text { or } 100 \times 34 \div 6800 \\
& 0.5(\%) \text { or } 1 / 2(\%) \\
& \text { (b) } 1.0225 \times 34000 \text { or } 34000+34000 \times 2.25 / 100 \\
& \text { or } 102.25 \times 34000 / 100
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & Accept 0.25 written as 1/4 \\
\hline (c) \(0.26 \times 1345\) or \(3 / 8 \times 600\) or \(0.045 \times 3600\) or equivalent 349.7 (m)
\[
\begin{array}{ll}
225(\mathrm{~m}) & \\
& 162(\mathrm{~m}) \\
160 & 230
\end{array}{ }^{250} \text { (m) }
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1 \\
B1
\end{tabular} & \begin{tabular}{l}
Any one correct calculation shown \\
Accept 349 or 350 \\
Accept 230 \\
Accept 160 \\
Must all be 2 significant figures \\
FT provided at least 2 of the A marks awarded
\end{tabular} \\
\hline \[
\text { (d) } \begin{aligned}
& 450 \times 4 \div 9 \\
&=200
\end{aligned}
\] & M1
A1 & Complete method CAO \\
\hline \begin{tabular}{l}
\[
450 \times 4 \div 5
\]
\[
=360
\] \\
Difference 160
\end{tabular} & \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
14
\end{gathered}
\] & \begin{tabular}{l}
Complete method \\
CAO \\
Depend on both M marks
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Methods in Mathematics Unit 2 Higher Tier June 2014 & Mark & Comment \\
\hline \[
\begin{aligned}
& \text { 4.(Area of faces are) } 2 e \times 3 e, 2 e \times 4 e, 3 e \times 4 e,\left(\mathrm{~cm}^{2}\right) \\
& (2 e \times 3 e, 2 e \times 4 e, 3 e \times 4 e)\left(\mathrm{cm}^{2}\right)
\end{aligned}
\] & M2 & M1 for any one of the 3 unique expressions These marks may be implied by correct simplified expressions \\
\hline (Simplified equation for the total surface area is)
\[
52 e^{2}=468
\] & A2 & \begin{tabular}{l}
FT for M2 or M1 as appropriate, provided their simplified sum includes at least two of the expressions \(6 e^{2}, 8 e^{2}, 12 e^{2}\) and all three terms in the form \(\mathrm{a} e^{2}\). \\
A1 for \((2 \times)\left[6 e^{2}+8 e^{2}+12 e^{2}\right]\) OR \(52 e^{2}\left(\mathrm{~cm}^{2}\right)\) \\
A1 for \(\mathrm{a} e^{2}=468\)
\end{tabular} \\
\hline \[
\begin{aligned}
e^{2} & =468 / 52 \quad(=9) \\
e & =3
\end{aligned}
\] & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \begin{tabular}{l}
FT 'their equation' if in the form \(\mathrm{a}^{2}=468\) \\
FT 'their equation' if in the form \(\mathrm{a} e^{2}=468\)
\end{tabular} \\
\hline \((\) Volume \(=6 \times 9 \times 12=) 648\left(\mathrm{~cm}^{3}\right)\) & B1 & FT 'their \(e\) ' within \(24 \times e^{3}\) correctly evaluated \\
\hline \begin{tabular}{l}
Look for: \\
- if units given, are they correct? \\
- notation
\end{tabular} & QWC & If no marks, then allow SC2 for \(3 e \times 4 e \times 2 e=468\) leading to an answer of \(e=2.69 \ldots\) or 2.7 , or SC1 for sight of \(3 e \times 4 e \times 2 e=468\) or equivalent \\
\hline - labels and joining text & 2 & QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical \\
\hline \begin{tabular}{l}
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps
\end{tabular} & & form, and with few if any errors in spelling, punctuation and grammar. \\
\hline \begin{tabular}{l}
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer
\end{tabular} & & QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR \\
\hline \begin{tabular}{l}
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps
\end{tabular} & & evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. \\
\hline \begin{tabular}{l}
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer
\end{tabular} & 9 & QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. \\
\hline 5. \(26.5-26.5 \times 0.12 \quad\) OR \(26.5 \times 0.88 \quad(=23.3(2)\) & M1 & OR M2 for
\[
26.5 \times 0.88 \times 0.92
\] \\
\hline \[
\begin{array}{r}
23.3(2)-23.3(2) \times 0.08 \text { OR } 23.3(2) \times 0.92 \\
(=21.4544 \text { or } 21.436)
\end{array}
\] & M1 & FT 'their 23.32 ', but not 26.5 \\
\hline \(25.3-21.4544(=3.8456)\) OR \(25.3-21.436(=3.864)\) & m1 & Depends on both previous M marks FT for their 23(.32) and their 21(...) \\
\hline \(3.8\left(\ldots .{ }^{\circ} \mathrm{C}\right)\) to \(3.9\left({ }^{\circ} \mathrm{C}\right)\) from correct working & \[
\begin{gathered}
\mathrm{A} 1 \\
4
\end{gathered}
\] & Accept \(4\left({ }^{\circ} \mathrm{C}\right)\) from correct working \\
\hline 6. Sight of any quotient using values from the table for \(\mathrm{a} / \mathrm{b}\) or \(\mathrm{b} / \mathrm{a}\) & M1 & Or sight of 1 correct response, or answers reversed \\
\hline \(\mathrm{a}=2.5 \times \mathrm{b}\) & A1 & Or equivalent \\
\hline \(\mathrm{b}=0.4 \times \mathrm{a}\) & \[
\begin{gathered}
\text { A1 } \\
3
\end{gathered}
\] & \begin{tabular}{l}
Or equivalent \\
FT from \(\mathrm{a}=0.4 \times \mathrm{b}\) to give \(\mathrm{b}=2.5 \times \mathrm{a}\)
\end{tabular} \\
\hline 7.(a) \(5.6 \times 10^{-5}\) & B1 & \\
\hline (b) \(2.3 \times 10^{9}\) & B1
2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Methods in Mathematics Unit 2 Higher Tier June 2014 & Mark & Comment \\
\hline \begin{tabular}{l}
8. Idea to show or use the perpendicular height in a right angled triangle \\
Height \(=\sin 58^{\circ} \times 6\)
\[
=5(.088 \ldots \mathrm{~cm})
\] \\
Area \(=5(.088 \ldots) \times 10\)
\[
=50.9\left(\mathrm{~cm}^{2}\right) \text { or } 51\left(\mathrm{~cm}^{2}\right)
\]
\end{tabular} & \[
\begin{gathered}
\text { S1 } \\
\text { M2 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] & \begin{tabular}{l}
Award for statement such as ' \(6(\mathrm{~cm}\) ) is not the vertical height' \\
M1 for \(\sin 58^{\circ}=\) Height \(/ 6\) \\
FT their \(5(.088 \ldots \mathrm{~cm})\) provided prior M1 awarded or an attempt has been made to use a trig ratio Must be rounded. Do not accept 50.8 or 50 (from premature approximation). FT from M1 If S1 only, then use of spurious perpendicular height <6, then also award SC1 for their perpendicular height \(\times 10\) correctly evaluated \\
Alternative: \\
Use of \(1 / 2 a b \sin C\) \\
\(2 \times 1 / 2 \times 6 \times 10 \times \sin 58^{\circ}\) \\
or \(M 2\) for \(1 / 2 \times 6 \times 10 \times \sin 58^{\circ}\) \\
\(50.9\left(\mathrm{~cm}^{2}\right)\) or \(51\left(\mathrm{~cm}^{2}\right)\) \\
or A1 for calculating \(1 / 2\) required area
\end{tabular} \\
\hline \begin{tabular}{l}
9(a) Correct translation \\
(b) Correct rotation \\
(c) Correct reflection in \(y=x\) \\
(d) Enlargement scale factor \(1 / 2\) \\
Correct position
\end{tabular} & \begin{tabular}{l}
B1 \\
B2 \\
B2 \\
B2 \\
B1 \\
8
\end{tabular} & \begin{tabular}{l}
B1 near miss of grid lines, or for clockwise \(90^{\circ}\) about ( \(-2,-1\) ), or for anticlockwise \(90^{\circ}\) about (-1, -2) \\
B1 for a reflection in \(y=-x\), \\
OR for sight of the line \(y=x\) \\
B1 for any 1 line correct, or consistent incorrect fractional scale
\end{tabular} \\
\hline ```
10. \(26.7=\Pi \times \mathrm{d}\) or \(26.7=2 \times \Pi \times \mathrm{r}\) or \(\mathrm{r}=26.7 / \Pi\)
Diagonal \(=8.495 \ldots\) to \(8.5(0 \ldots)(\mathrm{cm})\)
diagonal \({ }^{2}=\) side \(^{2}+\) side \(^{2}\)
side \(^{2}=\) diagonal \(^{2} / 2\)
side length \(=6(.0096 \ldots \mathrm{~cm})\)
Perimeter \(=24 .(\ldots . \mathrm{cm})\)
``` & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { B1 } \\
6 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Accept rounded or truncated FT their diagonal \\
Do not FT from inappropriate truncation or incorrect rounding (e.g. from \(\mathrm{d}=8.4\)) Answer here for A1 should round to 6.01 FT provided both M marks awarded for \(4 \times\) 'their side length'
\end{tabular} \\
\hline \begin{tabular}{l}
11.(a)(i) \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=-\mathrm{x}\) indicated (2 quadrants for both) \\
(ii) \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=-\mathrm{x}\) or equivalent \\
(b) \(\mathrm{x}^{2}+\mathrm{y}^{2}=3^{2}\) or \(\mathrm{x}^{2}+\mathrm{y}^{2}=9\)
\end{tabular} & B2
B2
\[
\begin{gathered}
\text { B1 } \\
5 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
B1 for either indicated in 2 quadrants, or both indicated in 1 quadrant each \\
B1 for indication of appropriate points at least 3 in each of the 4 quadrants Ignore any circles drawn CAO. B1 for either equation \\
CAO
\end{tabular} \\
\hline \[
\begin{gathered}
\text { 12. } \sin \mathrm{XYZ} / 23.8=\sin 123\left(^{\circ}\right) / 38.9 \\
\sin \mathrm{XYZ}=23.8 \times \sin 123\left(^{\circ}\right) / 38.9 \\
\left.\mathrm{XYZ}=30.871 . .{ }^{\circ}\right) \text { rounded or truncated correctly }
\end{gathered}
\] & \[
\begin{gathered}
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
3 \\
\hline
\end{gathered}
\] & OR 23.8/sin XYZ \(=38.9 / \sin 123\left({ }^{\circ}\right)\) OR \(\sin ^{-1} 0.513 \ldots\) This M1 implies previous M1 \\
\hline \[
\begin{array}{lc}
\text { 13. } \mathrm{y}=4-\mathrm{x} & \text { OR } \begin{array}{c}
\mathrm{x}=4-\mathrm{y} \\
2 \mathrm{x}^{2}+\mathrm{x}(4-\mathrm{x})-5=0
\end{array} \\
\mathrm{x}^{2}+4 \mathrm{x}-5=0 & \left.\mathrm{y}^{2}-\mathrm{y}\right)^{2}+(4-\mathrm{y}) \mathrm{y}-5=0 \\
\end{array}
\] & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
OR For sight of \(x^{2}+x y=4 x\) \\
OR Subtraction from \(1^{\text {st }}\) equation \\
OR \(\quad x^{2}+4 x=5\)
\end{tabular} \\
\hline \[
(x-1)(x+5)=0
\]
\[
(y-3)(y-9)=0
\] & M1 & FT provided quadratic from an appropriate substitution method or subtraction method OR alternative method to solve , e.g. formula with correct substitution and \(b^{2}-4 a c\) correctly simplified \\
\hline \[
\begin{array}{lll}
x=1, x=-5 & \text { OR } & y=3, y=9 \\
y=3, y=9 & x=1, x=-5
\end{array}
\] & \[
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
If A0, A0 then SC1 for \(x=1, y=3\) OR \(x=-5, y=9\) provided algebraic method shown with appropriate M1, M1, M1 marks \\
No marks for trial \& improvement methods
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Methods in Mathematics Unit 2 Higher Tier June 2014 & Mark & Comment \\
\hline \begin{tabular}{l}
14(a) 6:2 and 7:QR or equivalent, or scale factor 7/6 \(\mathrm{QR}=2 \times 7 \div 6\) or equivalent
\[
\mathrm{QR}=2.3(33 \ldots \mathrm{~cm})
\] \\
(b)
\[
\begin{aligned}
& \mathrm{AE}=4 \mathrm{x} \\
& \mathrm{AF}=5.5 \mathrm{y} \\
& (\text { Perimeter }=) 6 \mathrm{x}+8.5 \mathrm{y} \text { or } 6 \mathrm{x}+17 \mathrm{y} / 2 \quad \text { ISW }
\end{aligned}
\]
\end{tabular} & \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { B1 } \\
\text { B1 } \\
\text { B1 } \\
\\
\hline
\end{gathered}
\] & \begin{tabular}{l}
OR 6:8 and 7:PR or equivalent \\
OR PR=7×8 \(\div 6(=9.33 \ldots)\) or equivalent \\
CAO. Must be simplified \\
Accept \(1 / 2(12 x+17 y)\) \\
Answers of \(4 x+5.5 y+2 x+3 y\) imply B1, B1, B0
\end{tabular} \\
\hline \[
\text { 15. } \begin{aligned}
& \mathrm{b}=45\left({ }^{\circ}\right) \\
& \\
& \mathrm{c}=180\left({ }^{\circ}\right)
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
2 \\
\hline
\end{gathered}
\] & \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \text { 16(a) } \mathbf{H K}=\mathbf{H L}+\mathbf{L K}(=5 \mathbf{x}+6 \mathbf{y}+3 \mathbf{x}-6 \mathbf{y}) \\
& \quad=8 \mathbf{x}(+0 \mathbf{y}) \\
& \text { (b)(i) } \begin{aligned}
\mathbf{L N} & =3 \mathbf{x}-6 \mathbf{y}+18 \mathbf{x}-36 \mathbf{y}(=21 \mathbf{x}-42 \mathbf{y}) \\
\mathrm{k} & =7
\end{aligned}
\end{aligned}
\] \\
(ii) Collinear (or lie along the same straight line)
\end{tabular} & \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { B1 } \\
5 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
May be embedded. Award M1, A1 for sight of k=7 \\
Do not accept parallel as a full description
\end{tabular} \\
\hline \begin{tabular}{l}
17. Area of the square base \(=119.8-4 \times 23.6\)
\[
=25.4\left(\mathrm{~cm}^{2}\right)
\] \\
(Volume pyramid) \(76.4=1 / 3 \times 25.4 \times\) height
\[
\text { height }=9.02 \ldots \mathrm{~cm}
\] \\
(Volume cone) \(44.4=1 / 3 \times \pi \times r^{2} \times\) height
\[
\begin{aligned}
& \mathrm{r}^{2}=44.4 /(1 / 3 \times \pi \times \text { height } \\
& \mathrm{r}^{2}=(44.4 \times 1 / 3 \times 25.4) /(76.4 \times 1 / 3 \times \pi) \\
& \mathrm{r}^{2}=4.69 \ldots \text { to } 4.701 \ldots \\
& \text { (radius) } 2.17 \text { or } 2.2(\mathrm{~cm})
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
m1 \\
A1* \\
M1* \\
M1 \\
A1 \\
A1
\end{tabular} & \begin{tabular}{l}
FT their area of square base \\
Note \(\sqrt{ } 25.4=5.0398 \ldots \times 5.0398 \ldots\) \\
Depends on all previous method marks, FT their height \\
FT equivalent difficulty, isolating \(\mathrm{r}^{2}\) \\
CAO. \\
OR \(r^{2}=4.7\), or an appropriate unrounded \(r, r=\) \(2.1681875 \ldots\) to 2.17 \\
CAO. \\
Appropriate degree of accuracy required \\
Alternative for \(A I^{*}, M 1\) * \\
Equating heights,
\[
76.4 /(1 / 3 \times 25.4)=44.4 /\left(1 / 3 \times \pi \times r^{2}\right)
\] \\
For information: \\
Common height \(=9.02(\mathrm{~cm})\) \\
Height of a triangular face \(=9.37(\mathrm{~cm})\)
\end{tabular} \\
\hline
\end{tabular}

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk```

