Surname
Other Names

Centre Number	Candidate Number

GCSE LINKED PAIR PILOT

WJEC CBAC

4364/02

METHODS IN MATHEMATICS
 UNIT 2: Methods (Calculator)
 HIGHER TIER

A.M. TUESDAY, 17 June 2014
 2 hours

ADDITIONAL MATERIALS

A calculator will be required for this paper.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 4.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	3	
2.	10	
3.	14	
4.	9	
5.	4	
6.	3	
7.	2	
8.	6	
9.	8	
10.	6	
11.	5	
12.	3	
13.	6	
14.	6	
15.	2	
16.	5	
17.	8	
Total	100	

Formula List

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

1. Part of a shape is shown on the grid.

The dotted line is the line of symmetry of the shape.
Complete the drawing of the shape and then rotate your complete shape through 180° about the origin.

2. (a) Solve $\frac{5 x}{8}=10$.
\qquad
\qquad
(b) Solve $\frac{28}{x}=7$.
\qquad
\qquad
(c) Solve $6(3 x-17)=42$.
\qquad
\qquad
\qquad
\qquad
(d) Solve the inequality $9 x+5<77$.
\qquad
\qquad
\qquad
(e) Write down the greatest whole number that satisfies the inequality $5 x<85$.
\qquad
\qquad
\qquad
\qquad
3. (a) What percentage is 34 of 6800 ?
\qquad
(b) Increase 34000 by $2 \frac{1}{4} \%$.
\qquad
\qquad
(c) Evaluate each of the following three lengths correct to two significant figures, and then arrange them in ascending order.
You must show all your working.
$0 \cdot 26$ of 1345 metres
$\frac{3}{8}$ of 600 metres
4.5% of 3600 metres

Smallest

(d) Calculate the difference between

- the smaller share when 450 is shared in the ratio $4: 5$
and
- $\frac{4}{5}$ of 450 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4. You will be assessed on the quality of your written communication in this question.

The length of a cuboid is $4 e \mathrm{~cm}$.
The width of the cuboid is 3 ecm .
The height of the cuboid is $2 e \mathrm{~cm}$.
The total surface area of the 6 faces of the cuboid is $468 \mathrm{~cm}^{2}$.

- Write down an equation, in terms of e, for the total surface area of the cuboid.
- Solve the equation and use your answer to find the volume of the cuboid.

You must show all your working.
\qquad

Volume of the cuboid $=$
5. The temperature during Claudia's week on holiday changed every day. The temperature was $26.5^{\circ} \mathrm{C}$ on Saturday.

The temperature was 12% lower on Sunday than on Saturday. The temperature was 8% lower on Monday than on Sunday.

By Friday the temperature was $25 \cdot 3^{\circ} \mathrm{C}$.
What was the difference in temperature between Monday and Friday?
Examiner
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. It is known that a is proportional to b.

The table shows some values for a and b.

a	b
$7 \cdot 5$	3
30	12
40	16

Use the information given in the table to complete the following equations.

$$
\begin{aligned}
& a=\ldots \times \ldots \\
& b=\ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
7. Express each of the following numbers in standard form.
(a) 0.000056
\qquad
(b) 2300000000

Examiner
8. The diagram below shows a parallelogram.

Diagram not drawn to scale

The area of the parallelogram is not $60 \mathrm{~cm}^{2}$.
Calculate the correct area of the parallelogram.
Give your answer to an appropriate degree of accuracy.
\qquad
\qquad
\qquad
\qquad
9. (a) Translate the triangle shown below by $\binom{8}{-2}$.

(b) Rotate the triangle through 90° anticlockwise using the point $(-2,-1)$ as the centre of the rotation.

(c) Reflect the triangle shown in the line $y=x$.

(d) Enlarge the triangle shown by a scale factor of $\frac{1}{2}$ using the origin as the centre of the enlargement.

10. The diagram shows a circle with a diameter $P T$ and a square with a diagonal $R P$. $R T$ is a straight line with $R P=P T$.

Diagram not drawn to scale

The circumference of the circle is 26.7 cm .
Calculate the perimeter of the square.
\qquad
11. (a) A point moves such that it is equidistant from the x-axis and the y-axis.
(i) On the grid below, plot the locus of the point.

(ii) Write down the equations that represent the locus of the point.
and
(b) A point moves such that its distance from the origin is 3 units. Write down the equation that represents the locus of the point.
\qquad
12.

Diagram not drawn to scale
Calculate the size of $X \widehat{Y Z}$.
\qquad
\qquad
\qquad
13. Solve the following simultaneous equations using an algebraic method.

$$
\begin{array}{r}
2 x^{2}+x y-5=0 \\
x+y=4
\end{array}
$$

14. (a)

Diagram not drawn to scale

You are given that $X Y=6 \mathrm{~cm}, X Z=8 \mathrm{~cm}$ and $P Q=7 \mathrm{~cm}$.
Calculate the length of $Q R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

You are given that $A J=8 x \mathrm{~cm}, A K=11 y \mathrm{~cm}, E F=2 x+3 y \mathrm{~cm}$ and that F is the mid-point of $A K$.
Find the perimeter of triangle AEF in terms of x and y.
Give your answer in its simplest form.
15.

A sketch of $y=\tan x$ is shown above.
Complete the following statements.
$b=$ \qquad。
$c=$
。
16. You are given that $\mathrm{HL}=5 \mathbf{x}+6 \mathbf{y}, \mathrm{LK}=3 \mathbf{x}-6 \mathbf{y}$ and $\mathrm{KN}=18 \mathbf{x}-36 \mathbf{y}$.
(a) Express $\mathbf{H K}$ in terms of \mathbf{x} and \mathbf{y} in its simplest form.
\qquad
\qquad
\qquad
\qquad
(b) (i) Show that $\mathbf{L N}=k \mathbf{L K}$ where the value of k is to be found.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What can you say about the points \mathbf{L}, \mathbf{K} and \mathbf{N} ?
17. Here are some facts about two solids, a square-based pyramid and a cone.

Diagram not drawn to scale

Square-based pyramid	Cone
It is a right pyramid.	It is a right cone.
The total surface area of all 5 faces is $119 \cdot 8 \mathrm{~cm}^{2}$.	It has a volume of $44.4 \mathrm{~cm}^{3}$.
The area of one triangular face is $23 \cdot 6 \mathrm{~cm}^{2}$.	
It has a volume of $76.4 \mathrm{~cm}^{3}$.	

The volume of each of these solids is calculated using:

$$
\text { volume }=\frac{1}{3} \times \text { area of base } \times \text { perpendicular height. }
$$

The square-based pyramid and the cone have equal perpendicular heights.
Calculate the radius of the cone.
Give your answer correct to an appropriate degree of accuracy.
\qquad

