Surname
Other Names

Centre Number	Candidate Number

GCSE

WJEC CBAC

4353/02

MATHEMATICS (UNITISED SCHEME)
 UNIT 3: Calculator-Allowed Mathematics
 HIGHER TIER

A.M. TUESDAY, 17 June 2014

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.
A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.
Take π as 3.14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into account the quality of written communication (including mathematical communication) used in your answer to question 3.

Formula List

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

1. (a) Evaluate $\frac{\sqrt[3]{90}}{10 \cdot 5-7 \cdot 74}$. Give your answer correct to 2 decimal places.
(b) Factorise the expression $18-9 y$.
(c) Given the formula $H=3 R+2 S$, find H when $R=1 \frac{1}{3}$ and $S=-1 \cdot 8$.
\qquad
\qquad
\qquad
\qquad
(d) Solve the equation $\frac{3}{a}=10$.
\qquad
(e) Solve the equation $3(x-2)=x+2$.
2. The scatter diagram shows the values and ages of cars of a particular model.

(a) Write down the value of the oldest car.
(b) Draw, by eye, a line of best fit on the scatter diagram.
(c) Use your line of best fit to estimate the value of a 3-year-old car of this model.
3. You will be assessed on the quality of your written communication in this question.

Mr Jones pays for his gas by 12 equal monthly payments.
Each monthly payment is worked out using the following information.

- Mr Jones uses 15000 units of gas in a year.
- The cost of gas is 4.028 pence per unit used.
- There is a fixed charge of $£ 6.98$ per month.
- There is a discount of $£ 48$ per year.

Calculate Mr Jones's monthly payment.
You must show all your working.
4. A survey of 240 primary school pupils was carried out to find the amount of time they spent each week doing their homework.
Here are the results of the survey.

Time taken, t, in hours	Number of pupils
$0<t \leqslant 1$	80
$1<t \leqslant 2$	60
$2<t \leqslant 3$	52
$3<t \leqslant 4$	32
$4<t \leqslant 5$	16

(a) Draw a grouped frequency diagram of the data.

(c) Write down the class interval that contains the median.[1]
5. Two brothers, Gethin and David, share a sum of money in the ratio $2: 7$.

David gets $£ 30$ more than Gethin. Calculate how much money the brothers share.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. The diagram below shows part of a regular polygon. Calculate the number of sides of this regular polygon.

Diagram not drawn to scale
7. In a speedboat race, competitors travel 8.5 km south from the start to buoy A. Then they travel 7 km east to buoy B and then travel directly back to the start. Calculate the total distance that the competitors travel in the race.

8. Shade the region, inside the triangle below, that satisfies both of the following conditions:

- it is less than 5 cm from $A C$, and
- it is less than 4 cm from B.

$$
0
$$

9. Find the value of $\left(9.2 \times 10^{5}\right)-\left(3 \times 10^{4}\right)$. Give your answer in standard form.
10.

Diagram not drawn to scale

A cuboid made of metal has dimensions $10 \mathrm{~cm}, 8 \mathrm{~cm}$ and 5 cm . The mass of the cuboid is $1 \cdot 1 \mathrm{~kg}$. Calculate the density of the metal. State the units of your answer.
11. In a survey at a factory, 200 workers were asked to state their weekly earnings. The results of the survey are summarised in the table below.

Weekly earnings, s, in $£$	Frequency
$0<s \leqslant 100$	18
$100<s \leqslant 200$	22
$200<s \leqslant 300$	60
$300<s \leqslant 400$	84
$400<s \leqslant 500$	16

(a) Complete the table below.

Weekly earnings, s, in $£$	$\leqslant 0$	$\leqslant 100$	$\leqslant 200$	$\leqslant 300$	$\leqslant 400$	$\leqslant 500$
Cumulative frequency	0					

(b) Draw a cumulative frequency graph showing the earnings of the 200 workers.
[3]
Cumulative frequency

(c) Estimate the number of workers whose weekly earnings were more than $£ 250$.
[2]

Weekly earnings, s, in $£$

12. Solve the equation $\frac{12 x-1}{5}-\frac{x}{2}=-4$.

Examiner
13. From the top of a vertical cliff, the angle of depression of a sailing boat is 15°. If the sailing boat is 700 m from the base of the cliff, calculate the height of the cliff above sea level.

14. (a) Use the graph paper on the opposite page to draw the graph of $y=x^{2}-2 x$ for values of x from -2 to 4 .
\qquad
\qquad
\qquad
(b) Solve the equation $x^{2}-2 x=0$.
\qquad
\qquad
\qquad
(c) Use your graph to solve the equation $x^{2}-3 x-1=0$.

15. In a shot put event, competitors throw the shot from the throwing circle into a landing area. The landing area is part of a sector of a circle of radius 25 m , with its centre at the centre point of the throwing circle. The sector angle is 35°.
A diagram of the throwing circle and landing area is shown below.

Diagram not drawn to scale

Calculate the length of the arc $A B$.
\qquad
16. Given that p is inversely proportional to r^{2}, and that $p=6$ when $r=3$, find an expression for p in terms of r.
17. The triangle below has an area of $10 \mathrm{~cm}^{2}$. Calculate the value of x.

$(6 x+4) \mathrm{cm}$
Diagram not drawn to scale
18. A gardening tool made of steel has been manufactured by attaching two triangular pieces onto a piece in the shape of a parallelogram.
Using the information given in the diagram, calculate the size of $B \widehat{F C}$.

19. (a) On the axes below, sketch the graph of $y=\tan x$, for values of x from 0° to 360°.

(b) Find all the solutions of the following equation in the range 0° to 360°.

$$
\tan x=-2
$$

END OF PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

