GCSE MARKING SCHEME

METHODS IN MATHEMATICS (LINKED PAIR PILOT)

JANUARY 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2013 examination in GCSE METHODS IN MATHEMATICS (LINKED PAIR PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

UNIT 1 - FOUNDATION TIER

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 Foundation Tier January 2013 \& \& Final \\
\hline \[
\text { 12. } \begin{gathered}
(\mathrm{q}=) 72 \\
(\mathrm{r}=) 72 \\
(\mathrm{~s}=) 63 \\
(\mathrm{t}=) 45
\end{gathered}
\] \& \begin{tabular}{c}
B1 \\
B1 \\
B1 \\
B1 \\
4 \\
\hline
\end{tabular} \& \begin{tabular}{l}
FT their q \\
FT ' 108 - their s ', i.e. check \(\mathrm{s}+\mathrm{t}=108^{\circ}\)
\end{tabular} \\
\hline \begin{tabular}{l}
13.(a) Method to find prime factors
\[
2,2,2,2,3,3,5,5
\]
\[
2^{4} \times 3^{2} \times 5^{2}
\] \\
(b) 1 correct trial by summing 4 (consecutive) primes
\[
11,13,17,19
\] \\
Next two consecutive primes: 23,29
\[
112
\]
\end{tabular} \& M1
A1
B1
S1
B1
M1
A1
7 \& \begin{tabular}{l}
2 correct before \(2^{\text {nd }}\) error \\
Ignore 1s for A 1 , but not for B1 \\
FT provided an index \(>1\) involved. Accept "." \\
Must be sum 4 primes numbers (e.g. 7, 11, 19, 23) \\
Seen or implied (by next prime being 23) \\
FT their 4 numbers ('primes') to next 2 primes CAO
\end{tabular} \\
\hline \begin{tabular}{l}
14.(a) Reason, e.g. ' \(1 / 10\) (expected if fair)', or ' \((6 / 20=) 3 / 10\) AND \((4 / 20=) 2 / 10\) ', or ' \(10 / 40=2.5 / 10\) ' or 'should be 2 times in 20 spins' \\
Conclusion 'No' from a comparison with \(1 / 10\) \\
(b) \(10 / 40 \quad(=1 / 4=0.25\) or \(25 \%)\) \\
(c) Explanation, e.g. 'more spins'
\end{tabular} \& M1
A1

B2

E1

5 \& | Must show numerical value for reason |
| :--- |
| Do not accept $10 / 40=1 / 4$ unless comparison with $1 / 10$ |
| Do not accept ' N ' ' if an aspect of reasoning statement is incorrect, other than 1 slip in reading one of the given statements |
| Ignore incorrect cancelling |
| B1 for sight denominator 40 , or sight of ' \ldots in/out of 40 ' If no marks (a) and (b) then SC1 for sight of 10/40 $(=1 / 4=$ 0.25 or 25%) in the part (a) |

\hline
\end{tabular}

UNIT 1 - HIGHER TIER

Methods Unit 1 Higher Tier January 2013		Final
1. (a)	B3	Penalise any extra numbers (e.g. >10), -1 only B2 for 7,8 or 9 of the numbers placed correctly, marking any repeats as incorrect, OR

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 Higher Tier January 2013 \& \& Final \\
\hline \begin{tabular}{l}
8. Method to find the sum of the interior angles of a pentagon, e.g. \(3 \times 180^{\circ}\) \\
(Sum of interior angles) \(540^{\circ}\) \\
(Hence 540-90-90 so first three angles total is) \(360^{\circ}\) Strategy, e.g. use of trial and improvement meeting both criteria i.e. their relative angles are in the ratio 1 to 2 to 6 AND also working towards a total of \(360^{\circ}\) \\
(Smallest angle \(=\)) \(40^{\circ}\) OR sight of calculation \(360 \div 9 \times 6\) \\
(Largest angle \(=\)) \(240^{\circ}\)
\end{tabular} \& M1

A1
B1
S2

B1

B1 \& | May be implied in later work. FT 'their 540°, |
| :--- |
| FT 'their 360°, |
| Accept if working with the 2 angles of 90° and working to a total of 'their 540° ', this implies previous B1 provided 540° correct. |
| S1 for sight of their relative angles in the ratio 1 to 2 to 6 |
| B marks are independent of S marks |
| FT their $2^{\text {nd }}$ angle twice their first angle |
| Also FT 'their 540°, |
| FT $6 \times$ their $1^{\text {st }}$ angle, their largest angle six times their first angle provided answer $>90^{\circ}$ |
| Candidates working from total sum 360° rather than 540° may be awarded: |
| M0, A0, FT for possible |
| B1 ($360-180=$) 180 , |
| S2 (strategy 1 to 2 to 6 and working towards ' 180° ') or S1 |
| B1 ($1^{s t} 20^{\circ}, 2^{\text {nd }} 40^{\circ}$) |
| B1 ($1^{s t} 20^{\circ}$, largest 120°) |

\hline | 9.(a) Correctly completing the tree diagram $0.6,0.3 .0 .3,0.7$ |
| :--- |
| (b) 0.4×0.7 $=0.28$ |
| (c) 0.6×0.7 $=0.42$ | \& B2

M1
A1
M1

A1

6 \& | B1 for any one pair of branches correct (total 1) |
| :--- |
| Or other complete method. FT for their P (walk to college) $\times \mathrm{P}$ (walk home) correctly evaluated, or by alternative method |

\hline | $\text { 10.(a) } 3$ |
| :--- |
| (b) $1 / 2$ or 0.5 (with no working or from correct working) |
| (c) 8.5×10^{-4} |
| (d) 3×10^{9} | \& B2

B3

B1
B2

8 \& | B1 for one appropriate step, e.g. cancelling $\sqrt{5} / \sqrt{5}$, or sight of $\sqrt{ } 9$. Do not accept $\sqrt{ } 45 / \sqrt{ } 5$ until simplified. |
| :--- |
| B2 for $1 / 8$ AND 4 respectively OR 2^{-1} OR $4 / 8$ |
| B1 for $1 / 8$ OR 4 respectively \quad OR $\quad 2^{-3} \times\left(2^{4}\right)^{1 / 2}$ |
| B1 for 3000000000 or sight of 10^{9} |

\hline $$
\text { 11.(a) } n^{2}+7
$$

\[
$$
\begin{aligned}
& \text { (b) } \begin{array}{c}
\mathrm{ax}+\mathrm{b}=2(\mathrm{cx}+\mathrm{d}) \\
\mathrm{ax}+\mathrm{b}=2 \mathrm{cx}+2 \mathrm{~d} \\
\mathrm{ax}-2 \mathrm{cx}=2 \mathrm{~d}-\mathrm{b} \\
\mathrm{O} \\
\mathrm{x}(\mathrm{a}-2 \mathrm{c})=2 \mathrm{OR}-\mathrm{b} \\
\mathrm{x}=\frac{\mathrm{OR}}{\mathrm{x}}-2 \mathrm{~d}=2 \mathrm{cx}-\mathrm{ax} \\
\mathrm{x}=\frac{\mathrm{d}-\mathrm{b}}{\mathrm{a}-2 \mathrm{c}}
\end{array} \sqrt{\text { OR }} \quad \frac{\mathrm{b}-2 \mathrm{~d}=\mathrm{d}(2 \mathrm{c}-\mathrm{a})}{2 \mathrm{c}-\mathrm{a}}=\mathrm{x}
\end{aligned}
$$

\] \& | B2 |
| :---: |
| B1 |
| 7 | \& B1 for $\mathrm{n}^{2}+\ldots$ OR second difference of 2 with n^{2}

Accept intention, i.e. missing brackets. FT until $2^{\text {nd }}$ error

\hline 12. $5 \times 12=\mathrm{AD} \times 6$ or equivalent $\mathrm{OR} \mathrm{CD}=4(\mathrm{~cm})$ $\mathrm{AD}=10(\mathrm{~cm})$ \& M1
A1
2 \&

\hline | $\text { 13.(a) }(x+15)(x-1)$ |
| :--- |
| -15 and 1 |
| (b) $(x+3)^{2}+16$ | \& B2

B1
B2
5 \& B1 for (x...15)(x...1) or split mid term and 1st step factor FT from a pair of brackets B1 for $\mathrm{a}=3$ or B 1 for $\mathrm{b}=16$

\hline
\end{tabular}

UNIT 2 - FOUNDATION TIER

Methods Unit 2 Foundation Tier January 2013		Final
1. F and J $O R$ J and F B and G $O R$ G and B	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ 2 \\ \hline \end{gathered}$	
$\text { 2. (a) } 27 / 100 \times 830$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Or equivalent. Sight of 224 is evidence of M1 CAO Ignore units. Ignore subsequent rounding if 224.1 is given
(b) $(1 / 3$ of $1500=)(£) 500$	B1	$1 / 3+1 / 5 M 1$
($1 / 5$ of $1500=$) (£) 300 Saved 1500-500-300	B1 M1	FT 1500 - 'their 500' - 'their 300'8/15 spent A1 $7 / 15$ saved B1
Saved (£)700	A1	(£)700 B1
(c) 30(\%)	B1	
34(\%)	B1	
$28 \%, 0.3,17 / 50$ or equivalent	$\begin{gathered} \text { B1 } \\ 9 \end{gathered}$	FT 'their 30\%' and 'their 34\%'
3. (a) Sector	B1	
(b) Tangent	B1	
Chord	B1	
4. (a) 4 squares shaded correctly	B2	Award B1 for 3 correct and 1 incorrect OR B1 for between 5 and 8 shaded to produce a symmetrical diagram
(b) Correct diagram	B2	-1 for each incorrect vertex
(c) Correct diagram drawn	B3	Award B2 for 2 sections drawn correctly, B1 for 1 section correctly drawn
(d) correct shape drawn	$\begin{gathered} \text { B1 } \\ 8 \end{gathered}$	Accept in any orientation
$\text { 5. (a) } 3 / 4 \times 156$ 117	M1 A1 B1	Or equivalent
(b) (i) $40(\%)$ (ii) 60 (\%)	B1 B1	FT 100 - 'their 40' correctly evaluated
(c) (i) $2 / 6$ and $4 / 12$	B2	Award B1 for each. If more than 2 answers offered -1 for
(ii) $4: 16$ and 7:28	$\begin{gathered} \text { B2 } \\ 8 \end{gathered}$	each incorrect answer in (i) and (ii)
6. (a) $(4.76+6.59=) 11.35$	B1	Maybe implied
20-11.35	M1	FT 20 - 'their 11.35'
(£)8.65	A1	
(b) $50 \div 7.89$	M1	Alternative method, award M1 for workings that could lead to 6
6	$\begin{gathered} \mathrm{A} 1 \\ 5 \end{gathered}$	Answer of 6.3(37135...) is M1 A0
7. $\mathrm{a}=4$	B1	CAO
$\mathrm{b}=5$	B1	FT 9-'their a'
$\mathrm{c}=3$	B1	FT [13-'their a'] $\div 3$
$\mathrm{d}=2$	B1 4	FT 14 - 'their $\mathrm{a}+\mathrm{b}+\mathrm{c}$ '
8. (a) $x=13$	B1	Accept embedded answers throughout question
(b) $x=-4$	B1	
(c) $x=4$	B1	
(d) $2 x=14$	B1	
$x=7$	B1	FT 'their $14 \div 2$ '. Correctly evaluated if this leads to a whole number.
	5	
9. (a) 313.6	B1	
(b) 64.36	B2 3	B1 for sight of 9.6 or 73.96

Methods Unit 2 Foundation Tier January 2013		Final
10. Strategy for comparing sizes of coffee	S1	Eg. looking at 100 grams of coffee for each size or idea of doubling or halving.
For 200 gram jar, cost for 100 grams is (£)2.8(0)	B2	Award B1 for each.
		Candidates could compare another size rather than 100 grams. Eg. For 200 gram jar, cost for 400 grams is (£)11.2(0) B1 For 100 gram jar, cost for 400 grams is $(£) 12 \quad$ B1
		Cost per gram. Award B2 for all 3 correct. Award B1 for any 1 correct. For 200 g jar, cost is $2.8 p e n c e$ For 100 g jar, cost is 3 pence For 400 g jar, cost is $2.9(5)$ pence
		Grams per pound($£$). Award B2 for all 3 correct. Award B1 for any 1 correct. For 200 g jar, weight is 35.71 g For 100 g jar, weight is $33.3 . . . \mathrm{g}$ For 400 g jar, weight is $33.89 \ldots \mathrm{~g}$. Allow rounded or truncated answers
The 200 gram jar AND suitable reason/explanation	E1	E.g. The 200 gram jar is the best buy because it costs less (per 100 grams than the other sizes.) OR the 200 g jar because you get more coffee (per £1) OR correct workings but reason given as - The 400 g better because of less waste/number of jars etc.
QWC:	Q	
Look for	W	QWC2 Presents relevant material in a coherent and
- Correct units used - Spelling in at least 1 statement/sentence - Clarity of text explanations	C	logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
- Clearly linking working with size of coffee jar - the use of notation (watch for the use ${ }^{\prime}=$ ' " $£$ " being appropriate) - 0 missing from 2.80		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
Count incorrect use of ' $=$ ' in situations such as $200 \mathrm{~g}=$ $£ 5.60$ within the few mistakes in mathematical form		OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer		spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer	6	
11. (a) (i) $\times 0.25$ selected	B1	CAO
(ii) $\times 1.4$ selected	B1	CAO
(b) (i) Correct explanation given of either the error in her working OR the correct workings OR both	E1	Eg Susan subtracted 6 from 30 to get 24 and then divided by 2 to get 12 . OR She should work out $6 \div 2=3$ first and then subtract 3 from 30. OR should have used BIDMAS
(ii) $12+8 \times 3=36$	B1 4	CAO

\begin{tabular}{|c|c|c|}
\hline Methods Unit 2 Foundation Tier January 2013 \& \& Final \\
\hline \[
\begin{aligned}
\& \text { 12.(a) } 1 / 2(12.2+14.3) \times 9 \\
\& 119.25 \mathrm{~cm}^{2} \\
\& \text { (b) } x+2 x+3 x+3 x=108 \\
\& x=108 / 9(=12) \\
\& 12(\mathrm{~m}), 24(\mathrm{~m}), 36(\mathrm{~m})(\text { and } 36(\mathrm{~m}))
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } 1 \\
\text { U1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
6
\end{gathered}
\] \& \begin{tabular}{l}
Indept. mark \\
Idea not notation important, Or alternative first step
\end{tabular} \\
\hline \begin{tabular}{l}
13.(a) Correct translation \\
(b) Correct rotation \\
(c) Enlargement scale factor 2 \\
Correct position \\
(d) Correct reflection in \(\mathrm{x}=1\)
\end{tabular} \& B1
B2
B2

B1
B2

8 \& | B1 for a near miss (intention), OR anticlockwise rotation through 90°, OR sight of all $4 \times 90^{\circ}$ rotations B1 for any 2 lines correct, or for consistent incorrect scale factor used |
| :--- |
| B1 for reflection in $\mathrm{y}=1$ or either axis, OR for the sight of the line $\mathrm{x}=1$ or $\mathrm{x}=1 \mathrm{implied}$, OR reflection in any vertical line indicated |

\hline $$
\begin{gathered}
\text { 14. } 3 \mathrm{x}<30 \\
\mathrm{x}<10
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\text { M1 } 1 \\
\text { A1 } \\
2
\end{gathered}
$$
\] \& No marks for ' $=$ ' unless final replaced to give $\mathrm{x}<10$ then award M1, A1. An answer of $x<30 / 3$ gets M1, AO

\hline ```
15. (area of square $=$) 144
(area of circle =) $\pi \times 6^{2}$
113 to 113.1428.....
(area of shaded part =) $30.857 \ldots .$. to $31 \mathrm{~cm}^{2}$

``` & \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
4
\end{gathered}
\] & FT 'their area of square' - 'their area of circle' provided M1 awarded \\
\hline \[
\begin{aligned}
& \text { 16. }\left(\mathrm{AC}^{2}=\right) 11^{2}+18^{2} \\
& \mathrm{AC}^{2}=445 \text { or } \mathrm{AC}=\sqrt{ } 445 \\
& 21 .(095 \ldots) \text { or } 21.1(\mathrm{~cm})
\end{aligned}
\] & M1

A1
A1
3 & \begin{tabular}{l}
Showing steps of squaring and adding. \\
Do not penalise notation if steps are clearly intended
\end{tabular} \\
\hline
\end{tabular}

\section*{UNIT 2 - HIGHER TIER}
\begin{tabular}{|c|c|c|}
\hline Methods 2 Higher January 2013 & & Final \\
\hline \begin{tabular}{l}
1.(a) \((281.6 / 880) \times 100\) \\
(b) \(640+0.35 \times 640\) OR \(640 \times 1.35\) \\
864 \\
(c) 460000 \\
(d) 0.29 \\
(e) \(12.5-\frac{3}{8} \times 40\)
\[
-2.5
\]
\end{tabular} & M1
A1
M1
A1
B1
B3

M1

A1
10 & \begin{tabular}{l}
Allow 460000.0 \\
B2 for \(0.2858 \ldots\) rounded or truncated, OR \\
B1 for sight of 0.08(1699...) \\
Not for reversed unless answer is correct showing intention. Award SC1 for an answer of 2.5
\end{tabular} \\
\hline \begin{tabular}{l}
2. \\
(a) \(1 / 4\) or 0.25 \\
(b) \(14 x-26=16\) \\
OR \(7 x-13=16 / 2\) \\
\(14 x=42\) \\
OR \\
\(7 \mathrm{x}=21\)
\[
x=3
\] \\
(c) \(x+4=6 \times 12\)
\[
x=68
\] \\
(d) \(\mathrm{x}<34 / 5\) or \(\mathrm{x}<6.8\) \\
Answer of 6 \\
(e) \(3 x<30\)
\[
\mathrm{x}<10
\]
\end{tabular} & B1
B1
B1
B1
M1
A1
M1
A1
M1
A1
10 & \begin{tabular}{l}
Accept embedded answers in (a), (b) \& (c) \\
Accept 2/8 \\
FT until \(2^{\text {nd }}\) error \\
Or \(\mathrm{x} / 12=6-4 / 12\) \\
An answer of 6 implies ' \(<\) ' applied, so M1, A1 \\
No marks for ' \(=\) ' unless final replaced to give \(\mathrm{x}<10\) then award M1, A1. An answer of \(\mathrm{x}<30 / 3\) gets M1, AO
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 3.(a) } 1 / 2(12.2+14.3) \times 9 \\
& 119.25 \\
& \text { (b) } x+2 x+3 x+3 x=108 \\
& x=108 / 9(=12) \\
& 12(\mathrm{~m}), 24(\mathrm{~m}), 36(\mathrm{~m})(\text { and } 36(\mathrm{~m}))
\end{aligned}
\] & M1
A1
U1
M1
A1
A1
6 & \begin{tabular}{l}
Independent mark \\
Idea not notation important, Or alternative first step
\end{tabular} \\
\hline \begin{tabular}{l}
4.(a) Correct translation \\
(b) Correct rotation \\
(c) Enlargement scale factor 2 \\
Correct position \\
(d) Correct reflection in \(\mathrm{x}=1\)
\end{tabular} & B1
B2
B2

B1
B2
8 & \begin{tabular}{l}
B1 for a near miss (intention), OR anticlockwise rotation through \(90^{\circ}\), OR sight of all \(4 \times 90^{\circ}\) rotations B1 for any 2 lines correct, or for consistent incorrect scale factor used \\
B1 for reflection in \(\mathrm{y}=1\) or either axis, OR for the sight of the line \(\mathrm{x}=1\) or \(\mathrm{x}=1 \mathrm{implied}\), OR reflection in any vertical line indicated
\end{tabular} \\
\hline \[
\begin{aligned}
& 5 .(\mathrm{a})\left(\mathrm{x}^{2}=\right) 13.8^{2}-7.3^{2} \\
& x^{2}=137.15 \text { or } x=\sqrt{ } 137.15 \\
& 11.7(\ldots . \mathrm{cm}) \text { or } 12(\mathrm{~cm}) \\
& \text { (b) } \mathrm{y} / 4.5=11.2 / 8 \\
& \mathrm{y}=6.3(\mathrm{~cm}) \\
& \mathrm{z} / 8.4=8 / 11.2 \\
& \mathrm{z}=6(\mathrm{~cm})
\end{aligned}
\] & M1
A1
A1
M1
A1
M1
A1
7 & \begin{tabular}{l}
Showing steps of squaring and subtracting \\
Scale factor 11.2/8 (=1.4) used appropriately \\
Scale factor 11.2/8 (=1.4) used appropriately
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Methods 2 Higher January 2013 & & Final \\
\hline \begin{tabular}{l}
\[
\text { 10.(a) } 1 / 2 \times 9 \times 4
\]
\[
=18\left(\mathrm{~cm}^{2}\right)
\] \\
(b) Overall strategy: use of ratio and trigonometry
\[
\begin{aligned}
& 9 \div 5(=1.8) \\
& (\mathrm{AP}=) 5.4(\mathrm{~cm})
\end{aligned}
\] \\
Using angle APD \(=\) angle \(\operatorname{PDC}\) \\
Tan PDC \(=4 / 5.4\) \\
Angle PDC \(=\tan ^{-1} 0.74074074\) \\
Angle PDC \(=36.5\left(28855 \ldots{ }^{\circ}\right)\)
\end{tabular} & M1
A1
S1
M1
A1
B1

M1

A1
A1
9 & \begin{tabular}{l}
May include extra, \(2 / 5 \times 9\) or allow \(3 / 5 \times 9\) \\
OR using angle \(\mathrm{PDC}=90-\) angle ADP OR using perpendicular from P to DC. Check diagram FT their ' 5.4 ' provided their value is less than 9 OR Tan ADP = 5.4/4, must be clear that it is this angle OR Angle ADP = 53. \(\left(471 \ldots{ }^{\circ}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
11. Volume hemisphere \(=2 / 3 \times \Pi \times 10^{3}\) \\
Realising height of the cone \(=10(\mathrm{~cm})\) \\
Volume of cone \(=1 / 3 \times \Pi \times 10^{2} \times 10\) \\
Volume gel \(=2 / 3 \times \Pi \times 10^{3}-1 / 3 \times \Pi \times 10^{3}\) \\
Answers in the range 1046.6 to \(1048\left(\mathrm{~cm}^{3}\right)\)
\end{tabular} & M1
B1
M1
M1

A1
5 & \begin{tabular}{l}
(Answers in the range 2093 to 2095(.238....cm \(\left.{ }^{3}\right)\) ) \\
(Answers in the range 1046.6 to \(1048\left(\mathrm{~cm}^{3}\right)\) ) \\
Needs to be from a difference consideration, not volume of the cone and provided at least M1 previously awarded CAO
\end{tabular} \\
\hline \begin{tabular}{l}
12.(a) 3:5 and 4.5:QR or equivalent, or scale factor 1.5 \(\mathrm{QR}=1.5 \times 5\) or equivalent
\[
\mathrm{PR}=12(\mathrm{~cm})
\] \\
(b) \(\mathrm{MN}=4.5 \mathrm{y}\)
\[
\begin{aligned}
\mathrm{DN}= & 2.5 \mathrm{y} \\
& (\text { Perimeter }=) 3 \mathrm{x}+7 \mathrm{y}
\end{aligned}
\]
\end{tabular} & M1
A1
A1
B1
B1
B1
6 & \begin{tabular}{l}
OR 3:8 and 4.5:PR or equivalent \\
OR \(\quad \mathrm{PR}=4.5 \times 8 \div 3\) or equivalent \\
CAO. Must be simplified \\
An answer of \(1 / 2(6 x+14 y)\) implies B1, B1, B0
\end{tabular} \\
\hline \begin{tabular}{l}
13.General idea of tan curve and crosses axes at \(0^{\circ}, 180^{\circ}\) and \(360^{\circ}\) \\
Correct sketch tending to infinity correctly at \(90^{\circ}\) and \(270^{\circ}\) only
\end{tabular} & B1
B2
3 & B1 for correct sketch with idea of tending to infinity at \(90^{\circ}\) and \(270^{\circ}\) only but curving back instead of approaching vertical lines \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \text { 14.(a) } \cos \mathrm{A}=\frac{7.2^{2}+5.8^{2}-10.8^{2}}{2 \times 7.2 \times 5.8} \\
& \cos \mathrm{~A}=-0.373 \ldots . \\
& 111.9\left(059597 \ldots .^{\circ}\right) \text { or } 112^{\circ}
\end{aligned}
\] \\
(b) Attempt use of \(1 / 2 \mathrm{absinC}\) \(1 / 2 \times 7.2 \times 5.8 \times \sin\) 'their A' \\
Answer between \(19.35(\mathrm{~cm})\) and \(19.4(\mathrm{~cm})\) inclusive
\end{tabular} & M2

A1
A1
M1
m1
A1 & \begin{tabular}{l}
M1 for \(10.8^{2}=7.2^{2}+5.8^{2}-2 \times 7.2 \times 5.8 \times \cos \mathrm{A}, \mathrm{OR}\) M1 for 1 slip in rearranged form \\
Not for FT of inappropriate rounding or truncation Accept any values for \(\mathrm{a}, \mathrm{b} \& \mathrm{C}\), for choice \& quote rule 'their A ' \(\neq 7.2,5.8\) or 10.8 \\
CAO \\
Candidates choosing to calculate a different angle first, no marks until they reach the '1/2absinC' stage then \(F T\) for their angle with appropriate sides used.
\end{tabular} \\
\hline \begin{tabular}{l}
15. Equation \(\mathrm{x}(\mathrm{x}+8)=\mathrm{y}\) \\
Sight of \(\mathrm{x}(\mathrm{x}+8)=\mathrm{y}\) AND \(\mathrm{y}=1284+\mathrm{x}\),
\[
\text { OR } \quad \mathrm{x}(\mathrm{x}+8)=\mathrm{x}+1284
\]
\[
x^{2}+7 x-1284=0
\]
\[
x=\left\{-7 \pm \sqrt{ }\left(7^{2}-4 \times 1 \times-1284\right)\right\} / 2
\]
\[
x=\{-7 \pm \sqrt{5185}\} / 2
\]
\[
x=32 . \overline{5}(0347 \ldots \quad(\text { and }-39.5 \ldots)
\] \\
(Dimensions are) \(32.5(\mathrm{~cm})\) by \(40.5(\mathrm{~cm})\)
\end{tabular} & \begin{tabular}{c} 
B2 \\
B1 \\
\\
B1 \\
M1 \\
A1 \\
A1 \\
A1 \\
\\
8 \\
\hline
\end{tabular} & \begin{tabular}{l}
Allow B1 for sight of \(\mathrm{x}(\mathrm{x}+8)\) \\
Must be rearranged form \(\mathrm{y}=1284+\mathrm{x}\), \\
FT from 1 error \\
Allow 1 slip \\
FT for +ve x and \(\mathrm{x}+8\) provided M1 awarded, with answer correct to 1 d.p. \\
Watch for alternative with elimination of \(x\) instead of \(y\), and mark accordingly
\end{tabular} \\
\hline
\end{tabular}

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk```

