GCSE MARKING SCHEME

APPLICATIONS OF MATHEMATICS (LINKED PAIR PILOT)

JANUARY 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2013 examination in GCSE APPLICATIONS OF MATHEMATICS (LINKED PAIR PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

UNIT 1 - FOUNDATION TIER

Applications Unit 1 Foundation Tier January 2013		Final
1. (a) Moscow at $-8^{\circ} \mathrm{C}$ Los Angeles at $13^{\circ} \mathrm{C}$ (b) $21\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	Accept between 12 and 14 exclusive Accept $-21\left({ }^{\circ} \mathrm{C}\right)$
2.(a) Sian AND valid explanation eg " 5 divides (exactly) into 10 " David AND valid explanation eg " 5 isn't in the 10 times table" or "10 is a multiple of 5 " or " 5 is a factor of 10 " (b)(i) No AND valid explanation eg "No because 3^{2} is 9 " or "when you square an odd number you get an odd answer" (ii) No AND valid explanation eg "No because $3 \times 5=15$ " or " 3 (or 5) goes into 15 " or " 3 (or 5) is a factor of 15 " (c) Valid explanation eg. $\left(2^{3}=\right) 8$ or " it's $2 \times 2 \times 2 \operatorname{not} 2 \times 3$	E1 E1 E1 E1 E1 5	Sian may be implied from valid explanation. Do not accept "Sian is correct because 5 is a factor of 10." David may be implied from valid explanation No may be implied No may be implied
$\begin{aligned} & \text { 3. total ticket sales }=108770 \\ & \text { Cost of tickets }=108770 \times 24 \\ & \begin{array}{ll} 2610500 & \text { (£) } 2610480 \end{array} \end{aligned}$	B1 M1 A1 B1 4	FT their 108770 FT 'their 2610480 ' rounded to the nearest 100 Alternative method $\begin{array}{r} 18535 \times 24+26750 \times 24+19125 \times 24+15400 \\ \times 24+28960 \times 24 \quad M 2 \\ (444840+642000+459000+369600+ \\ 695040) \end{array}$ Award M1 for multiplying at least 3 of the number of tickets at each venue by 24 with an intention to add OR for multiplying all 5 of the number of tickets at each venue by 24 with no intention to add (£)2610480 A1 2610500 B1 FT' 'their 2610480' rounded to the nearest 100 for last B1
4. (a) For attempting to count squares Accept in range 24 to 32 (centimetre squares) (b) Area of lawn in range 78 to 86 Their area $\times 5$ Area in range 390 to $430\left(\mathrm{~m}^{2}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	Accept use of $\pi r^{2} \quad$ M1 for correct method, $\pi \times 3^{2}$ $28.3 \quad$ A1 for correct answer. $28-$ ISW if their pond area $\times 5$ FT 110 (area of rectangle) - their (pond)(a) FT their area If no marks awarded in (b) award SC1 for sight of 550 (implies $\times 5$)
5. (a) Correct net circled or clearly indicated (b) Area of one face $=49\left(\mathrm{~cm}^{2}\right)$ Total surface area $=49 \times 6$ $\begin{gathered} =294 \\ \mathrm{~cm}^{2} \end{gathered}$	B1 B1 M1 A1 U1 5	FT their 49 but not 7
6. (a) Mean for Andy $=336$ $\div 6$ $=56$ (b) Put in order 39, 40, 42, 62, 7071 Median of Jim = 52	$\begin{gathered} \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	Attempt to add all given values for Andy FT 'their 336' CAO Sight of 42 and 62 only would gain M1

\begin{tabular}{|c|c|c|}
\hline Applications Unit 1 Foundation Tier January 2013 \& \& Final \\
\hline \[
\text { 7. (a) } \begin{aligned}
\& \mathrm{S}=0.6 \times 3.8 \times 32.5 \\
\&=74.1 \\
\& \text { (b) } \begin{aligned}
\text { Marks } \& =100.8 \div(4.2 \times 0.6) \\
\& =40
\end{aligned} \\
\&
\end{aligned}
\] \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
\] \& \\
\hline \begin{tabular}{l}
8. (a) \\
Angle LQN = \(180-118\) \(=62\left({ }^{\circ}\right)\) \\
Angle LQP \((=62+90)=152\left({ }^{\circ}\right)\)
\end{tabular} \& M1
A1
B2 \& \begin{tabular}{l}
Look at diagram, may be seen or implied Or \(360-(118+90+90)\) \\
FT their 62. Award B1 for angle \(\mathrm{PQN}=90\left({ }^{\circ}\right)\) (may be on diagram) \\
Alternative method \\
Sum of interior angles of pentagon \(=540\left({ }^{\circ}\right) \mathrm{B1}\) \\
Angle PON or \(Q P O=90\left({ }^{\circ}\right) \mathrm{B1}\)
\[
\begin{array}{r}
540-(118+90+90+90) M 1 \\
152\left(^{\circ}\right) A 1
\end{array}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
(b) circle drawn with radius 4 cm \\
(c) \(125^{\circ}\) or \(80^{\circ}\) drawn \\
Accurate completed shape
\end{tabular} \& \[
\begin{gathered}
\mathrm{B} 1 \\
\mathrm{M} 1 \\
\mathrm{~A} 1 \\
7 \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \pm 2 \mathrm{~mm} \\
\& \pm 2^{\circ}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \text { 9. (Andrea) }(\mathfrak{£}) 10.75 \\
\& \text { (Ravinder) }(\mathfrak{£}) 7.85 \\
\& \text { (Erika) }(\mathfrak{£}) 10.65
\end{aligned}
\] \& B2 \& Award B1 for any 2 of Andrea, Ravinder \& Erika correct. \\
\hline (Total Bill) (£)29.25 \& B1 \& FT their ' \(10.75+7.85+10.65\) ' (£)29.25 implies B2 B1 \\
\hline \begin{tabular}{l}
(Each pays) \(29.25 \div 3\) \\
(£) 9.75
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& FT their total bill (£)9.75 implies all previous marks \\
\hline Andrea(benefits the most) by (\(£\)) \(1(.00\)) \& A1 \& \begin{tabular}{l}
FT their values. \\
Unsupported correct answer implies all previous marks.
\end{tabular} \\
\hline \begin{tabular}{l}
Look for \\
- Spelling \\
- Clarity of text explanation \\
- the use of notation, watch for the use of ' \(=\) ', ' \(£\) ', \(\div\) being appropriate
\end{tabular} \& QWC
2 \& QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
\hline \begin{tabular}{l}
For QWC2 labels, appropriate use of ' \(=\) ' and units \((£)\) must be evident. \\
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer
\end{tabular} \& \& \begin{tabular}{l}
QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar \\
OR \\
evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
\end{tabular} \\
\hline \begin{tabular}{l}
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer
\end{tabular} \& 8 \& QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. \\
\hline 10. (a) Plotting at least two correct points \& P1 \& \\
\hline Correct straight line through points \& L1 \& \\
\hline (b) Approximately 110 (lbs) \& B1 \& FT their graph, within 1 small square \\
\hline (c) Clear method shown \& M1 \& Accept use of graph or \(200 \div 2.2\) or other valid method. FT their line \\
\hline Approximately 91 (kg). Accept answers in range 85 95 \& A1

5 \& | Award SC1 for unsupported answers in the ranges 80-84.9 or 95.1-100 |
| :--- |
| Incorrect answers from a correct method but still in range award M1 A0 |

\hline
\end{tabular}

Applications Unit 1 Foundation Tier January 2013							Final
11. (a) ($y=1$ is line) q ($x=-3$ is line) s (b) (i)						B1 B1	
x	-2	-1	0	2	3	B2	Award B1 for each
$\mathrm{y}=2 \mathrm{x}-1$	-5	-3	-1	3	5		
(ii) Plotting points correctly Correct line drawn						P1 L1 6	FT their points for P1 CAO Award P1, L1 for line drawn passing through the correct points
12(a)							
Square			, Rho	s, P	lelogram	B2	B1 for any 3 unambiguous correct entries
(b)							
Square, Rhombus, Parallelogram					Kite	B2 4	B1 for any 3 unambiguous correct entries
13.(a) $3 \mathrm{e}+2 \mathrm{f}$ (p)						B2	Allow 3xe + $2 \times f$ B1 for either 3 e (or $3 \times \mathrm{e}$ or $\mathrm{e} \times 3$) or 2 f (or $2 \times \mathrm{f}$ or $\mathrm{f} \times 2$) If B2, penalise further incorrect work -1
(b) $\frac{3 \mathrm{e}+2 \mathrm{f}}{100}$ or $0.03 \mathrm{e}+0.02 \mathrm{f}(\mathrm{p})$ or equivalent						B1	Must clearly show ALL divided by 100 . FT their (a) if a sum of 2 terms, equivalent difficulty
14(a)							Accept 'their North' provided $\pm 2^{\circ}$ from the North given. Penalise 'their North' outside of this tolerance once only
120° drawn from Start 040° drawn from the position of the first clue 280° drawn from the position of the second clue						B1	$\pm 2^{\circ}$
						B1	$\pm 2^{\circ}$
						B1	$\pm 2^{\circ}$
Line 7.5 cm OR 9 cm OR 2.5 cm for the appropriate stage						B1	$\pm 2 \mathrm{~mm}$
Accurate chart with lengths and angles correct (b) 300°						B1	Within tolerances allowed
						B1	$\pm 2^{\circ}$. FT from their diagram
(c) Distance $(\pm 2 \mathrm{~mm})$ from the position of the third clue to the start						B1	FT from their diagram (Actual is approximately $10.5 \times 40=420 \mathrm{~m}$)
Bearing $\left(\pm 2^{\circ}\right)$ from the position of the third clue to the start						B1 8	FT from their diagram (Actual is approximately 250°)
15(a) Reason, e.g. all different age groups						E1	Not marking choice 'yes' or 'no', marking understanding of cross-section of people asked. So could be, e.g. 'yes, as older people don't go to the cinema', or 'no, as all sorts of people go to the cinema'. Look for focus on age in response. Do not accept contradiction of choice yes or no with reason.
(b) Two boxes if you are 20 or refers to 'wide' group of older people						E1	Do not accept reference to age related ownership of MP3 Do not accept 'people not liking to give age', or 'lie about age', or 'not enough boxes' (as ambiguous)
(c) Suitable question with at least 3 boxes, no overlap or gaps (in pence) and prices from a low value upwards considered						E2	E1 for suitable question with at least 3 boxes, max of 1 overlap or 1 gap, must be suitable for amounts such as $£ 19.99$, i.e. pence considered as well as $£ \mathrm{~s}$, OR E1 for prices from a low value upwards considered, minimum acceptable range $\approx £ 30$ to $\approx £ 50$
(d) Reason implying 'no' showing understand that repeating an experiment can lead to different results (e)(i) Reason implying no, such as: 'all columns total 20', 'all 60 answered', 'all people selected red, black or silver'						E1	Accept 'no, as different people have different thoughts/amount to spend'
						E1	Accept more complex answers. Do not accept reference to just 20 people
(ii) Strategy to use all data (for 60 people)$12 / 60(=1 / 5=0.2)$						S1	
						B1 8	Ignore incorrect cancelling of 12/60. B0 for 12 out of 60 , or 12 in 60 , but either of these responses gets S 1

UNIT 1 - HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline Applications Unit 1 Higher Tier January 2013 \& \& Final \\
\hline \begin{tabular}{l}
\[
\text { 1.(a)(i) } 3 \mathrm{e}+2 \mathrm{f}(\mathrm{p})
\] \\
(ii) \(\frac{3 \mathrm{e}+2 \mathrm{f}}{100}\) or \(0.03 \mathrm{e}+0.02 \mathrm{f}(\mathrm{p})\) or equivalent \\
(b) 1000 t \\
(c) \(5 x\) \\
(d) \(14 \mathrm{q}^{2}\left(\mathrm{~cm}^{2}\right)\) or equivalent
\end{tabular} \& \begin{tabular}{l}
B2 \\
B1 \\
B1 \\
B1 \\
B2 \\
7
\end{tabular} \& \begin{tabular}{l}
Allow \(3 \times \mathrm{e}+2 \times \mathrm{f}\) \\
B1 for either 3 e (or \(3 \times \mathrm{e}\) or \(\mathrm{e} \times 3\)) or \\
2 f (or \(2 \times \mathrm{f}\) or \(\mathrm{f} \times 2\)) \\
If B2, penalise further incorrect work -1 \\
Must clearly show ALL divided by 100. \\
FT their (i) if a sum of 2 terms, equivalent difficulty \\
Allow \(1000 \times t\) or \(t \times 1000\) \\
Allow \(5 \times x\) or \(x \times 5\) \\
B1 for \(1 / 2 \times 4 q \times 7 q\) \\
If B2, penalise further incorrect work -1
\end{tabular} \\
\hline 2(a)
\begin{tabular}{|l|l|}
\hline Square \& Kite, Rhombus, Parallelogram \\
(b) \& \begin{tabular}{|l|}
\hline Square, Rhombus, Parallelogram
\end{tabular} Kite
\end{tabular} \& B2

B2

4 \& | B1 for any 3 unambiguous correct entries |
| :--- |
| B1 for any 3 unambiguous correct entries |

\hline | 3(a) 255 $51(578+5) \text { OR } 6 y^{3}+15 y=29733$ |
| :--- |
| Abby's code AND 1083 |
| (b) 1369 | \& | B1 |
| :--- |
| M1 |
| A1 |
| B1 |
| B2 |
| 6 | \& | CAO |
| :--- |
| CAO |
| CAO. Answer space not a contradiction. FT 1083 AND all their 4 digit codes selected |
| If correct evaluation accept blank 'Abby's code' space B1 for sight of 37 |

\hline | 4(a) Reason, e.g. all different age groups |
| :--- |
| (b) Two boxes if you are 20 or refers to 'wide' group of older people |
| (c) Suitable question with at least 3 boxes, no overlap or gaps (in pence) and prices from a low value upwards considered |
| (d) Reason implying 'no' showing understand that repeating an experiment can lead to different results |
| (e)(i) Reason implying no, such as: 'all columns total 20', 'all 60 answered', 'all people selected red, black or silver' |
| (ii) Strategy to use all data (for 60 people) $12 / 60(=1 / 5=0.2)$ | \& E1

E1
E1

E2

E1
E1
E1
S1
B1

8 \& | Not marking choice 'yes' or 'no', marking understanding of cross-section of people asked. So could be, e.g. 'yes, as older people don't go to the cinema', or 'no, as all sorts of people go to the cinema'. Look for focus on age in response. Do not accept contradiction of choice yes or no with reason. |
| :--- |
| Do not accept reference to age related ownership of MP3 |
| Do not accept 'people not liking to give age', or 'lie about age', or 'not enough boxes' (as ambiguous) |
| E1 for suitable question with at least 3 boxes, max of 1 overlap or 1 gap, must be suitable for amounts such as $£ 19.99$, i.e. |
| pence considered as well as $£$ s, OR |
| E1 for prices from a low value upwards considered, minimum acceptable range $\approx £ 30$ to $\approx £ 50$ |
| Accept 'no, as different people have different thoughts/amount to spend' |
| Accept more complex answers. |
| Do not accept reference to just 20 people |
| Ignore incorrect cancelling of $12 / 60$. B0 for 12 out of 60 , or 12 in 60 , but either of these responses gets S1 |

\hline | 5(a) |
| :--- |
| 120° drawn from Start |
| 040° drawn from the position of the first clue |
| 280° drawn from the position of the second clue |
| Line 7.5 cm OR 9 cm OR 2.5 cm for the appropriate stage |
| Accurate chart with lengths and angles correct |
| (b) 300° |
| (c) Distance $(\pm 2 \mathrm{~mm})$ from the position of the third clue to the start |
| Bearing $\left(\pm 2^{\circ}\right)$ from the position of the third clue to the start | \& | B1 |
| :--- |
| B1 |
| 8 | \& | Accept 'their North' provided $\pm 2^{\circ}$ from the North given. Penalise 'their North' outside of this tolerance once only $\pm 2^{\circ}$ |
| :--- |
| $\pm 2^{\circ}$ |
| $\pm 2^{\circ}$ |
| $\pm 2 \mathrm{~mm}$ |
| Within tolerances allowed |
| $\pm 2^{\circ}$. FT from their diagram |
| FT from their diagram |
| (Actual is approximately $10.5 \times 40=420 \mathrm{~m}$) |
| FT from their diagram |
| (Actual is approximately 250°) |

\hline | $\text { 6. } \begin{aligned} & 195 / 3(=65) \\ & \times 10 \end{aligned}$ |
| :--- |
| (£)650 | \& \[

$$
\begin{gathered}
\mathrm{M} 1 \\
\text { m1 } \\
\text { A1 } \\
3
\end{gathered}
$$
\] \& OR sight of $130,(195$,$) and 325$ OR sight of $130+195+325$ CAO

\hline
\end{tabular}

Applications Unit 1 Higher Tier January 2013		Final
7.(a)(i) Mid-points 52, 56, 60 and 64	B1	
$52 \times 12+56 \times 32+60 \times 14+64 \times 2 \quad(=3384)$	M1	FT their mid-points including bounds
160	м1	FT their $\Sigma f_{x} / 60$
56.4	A1	Accept 56 from correct working seen
(ii) Strategy to look back that 32 out of 60 are size 2, e.g. '(table shows) about half customers are size 2	M1	Accept reference back to (a)(i) table without specific numeral details provided 'salesman correct' stated.
Conclusion to give Salesman is correct	A1	
(b)(i) 242235229	B3	B2 for any two correct entries, B1 for a correct method seen, or 1 correct entry
(ii) Refers to 'smoothing out data', or 'giving a picture of a complete year's sales', or similar	E1 10	Do not accept 'makes it clearer' Accept 'averages data out'
8(a) Valid reason or explanation, e.g. 'pond fits inside a rectangle' or 'pond fits inside a rectangle' or 'approximates to a rectangle'	S1	Sight of the word rectangle. Needs to be precise in reference to rectangle, not vague referring to edges or banks of the pond being extra
Sight of 6×20	B1	
(b) E.g. Considers 2 semi-circles and a rectangle	S1	Idea of splitting up the area
Method of calculating area	M1	e.g. $\pi \mathrm{r}^{2}+1 \times \mathrm{w}$
Accuracy in establishing missing lengths / dimensions	M1	e.g. Sight of diameter 6 m or radius 3 m AND length of rectangle 20-6(=14)m, or $\pi \times 3^{2}+14 \times 6$
Improved estimate	A1	e.g. 112(.27 $\ldots \mathrm{m}^{2}$)
QWC1 for a clear explanation of 'their idea' with generally accurate spelling	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if
Look for - relevance		any errors in spelling, punctuation and grammar.
- spelling - clarity of text explanations, - the use of notation (watch for the use ' $=$ ' being appropriate) - units - labelling		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps		
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer	8	
9.(a) $6.8(408) \times 10^{7}$	B2	B1 for 68408000 or 3.4(204) $\times 10^{7}$
(b) $5.43 \times 10^{6} / 19$ or $5.43 \times 10^{6} / 19 \pm \mathrm{x}$	M1	Ignore for some candidates realising 1 less gap for overall length, x is a small compensation value.
$\times 0.03$	м2	M1 for $\times 3$
$8.57(368 \ldots) \times 10^{3}(\mathrm{~m})$ or $8.6 \times 10^{3}(\mathrm{~m})$	A1	FT from M1, M1 but must be in standard form If division by 19.03 leading to $8.56(0168 \ldots) \times 10^{3}(\mathrm{~m})$ mark as above, i.e. allow M1, $m 2$ but award A0 for this misinterpretation of the gaps as extra

UNIT 2 - FOUNDATION TIER

\begin{tabular}{|c|c|c|}
\hline Applications Unit 2 Foundation Tier January 2013 \& \& Final \\
\hline \begin{tabular}{l}
1. (a)(i) \(2 \times(\mathfrak{£}) 1.99+(\mathfrak{f}) 2.10+3 \times(\mathfrak{f}) 1.80\) \\
(£) 11.48 \\
(ii) \(6 \times(£) 1.29\) \\
(£) 7.74 \\
(b) \(48 \div 6\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
6
\end{gathered}
\] \& \begin{tabular}{l}
Allow one omission/extra \\
CAO \\
FT 'their number of sandwiches' used in part (a) \\
FT 'their number of men'
\end{tabular} \\
\hline \begin{tabular}{l}
2. (a) 6 \\
(b) \(8+12+6+7\) \\
33 \\
(c) For correct pictogram drawn with labels \\
Cereal \\
Toast \\
Cooked breakfast \\
Hot drink only
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B3
\[
6
\]
\end{tabular} \& \begin{tabular}{l}
For adding frequencies \\
Award B2 for 3 correct, B1 for 2 correct Penalise -1 for no labels
\end{tabular} \\
\hline \begin{tabular}{l}
3. (a) A and D \(B\) and \(H\) \\
(b) F and G K and J
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
4
\end{gathered}
\] \& Accept pairs of answers in any order in both parts \\
\hline \begin{tabular}{l}
4. (a) Correct completion of Rangoli Pattern (10 lines) \\
(b) Triangle in correct position in \(4^{\text {th }}\) diagram
\end{tabular} \& B2
B2

4 \& | Award B1 for 5 or more lines correctly drawn |
| :--- |
| Award B1 for the triangle drawn in correct position in $2^{\text {nd }}$ or $3^{\text {rd }}$ diagram OR award B1 for incorrect triangle drawn in $2^{\text {nd }}$ diagram but then a correct FT drawn in ($3^{\text {rd }}$ and) $4^{\text {th }}$ diagram(s). |

\hline | 5. (a) Length of pen -14 cm |
| :--- |
| Height of door $-2 m$ |
| Weight of a tin of beans -420 g |
| Capacity of a can of fizzy drink - 330 ml |
| Weight of a bag of sugar -1 kg |
| (b) Better buy is 3 kg of potatoes for 80 pence with a reason that 3 kg is approx $6(.6) \mathrm{lbs}$, so are getting a greater weight of potatoes (for the same money). | \& B4 \& | Award B3 for 3 or 4 correct, B2 for 2 correct, B1 for 1 correct. |
| :--- |
| Award E1 for a partial reason or award E1 for sight of 6(.6)lbs with no reason Eg if say 3 kg is heavier than 5 lbs award E1 Or 3 kg gives ore potatoes for the same money |

\hline | 6. (a) $40 / 100 \times 140$ |
| :--- |
| (£) 56 |
| (b) coat on Tuesday costs $(140-56=)(\mathfrak{f}) 84$ $20 / 100 \times 84$ |
| (£)16.8(0) |
| Coat costs $(84-16.80=)(£) 67.2(0)$ | \& M1

A1

B1

M1
A1
B1

6 \& | Answer of $(\mathfrak{f}) 84$ in this part gets M1 A0 |
| :--- |
| FT 'their 56.' Award this B1 if shown in part (a) |
| Alternative method 80/100 $\times 84$ M2 $=(£) 67.2(0) \mathrm{Al}$ |
| FT 'their 84 and 16.80 ' if at least M1 awarded in (a) or (b) |
| If no marks awarded in (b) |
| Award SC2 for an answer of 112 |
| Or Award SC1 for sight of 28 or for 1 slip in workings towards answer of 112 |

\hline
\end{tabular}

Applications Unit 2 Foundation Tier January 2013		Final
7. (Cost of Sausages) $240 \div 15 \times 5.20$$(\mathfrak{f}) 83.2(0)$(Cost of Rolls) $240 \div 12 \times 1$	M1	
	A1	If M0 A0 Award SC1 for 16 (kgs)
	M1	
(Cost of Rolls) $240 \div 12 \times 1$ (£) 20	A1	If answer given as $\mathbf{2 0}$ packs Award SC1
(Total) (f) 103.2(0)	B1	FT 'their (£) 83.20 ' + 'their (\mathfrak{f})20' provided at least M1 awarded
$35 / 100 \times 103.2(0) \quad$ (£)36.12	M1	FT 'their (£)103.2(0)'
	A1	
$\begin{aligned} & (1 / 4 \times 103.2(0)=) \quad(\mathfrak{f}) 25.8(0) \\ & (103.2(0)-36.12-25.8(0)=)(\mathfrak{f}) 41.28 \end{aligned}$	B1	FT 'their (£)103.2(0)' but not 'their (£)36.12'
	B1	FT 'their ($\mathfrak{£}$) $103.2(0)$ - 'their $(\mathfrak{£}) 36.12$ ' - 'their (£) 25.80 '
		Watch for 103.2(0) - 60\% of 103.2(0) or 40% of 103.2(0)
$(41.28 \div 8=(\mathfrak{f}) 5.16$	B1 10	FT 'their remaining cost' $\div 8$
$\begin{aligned} & \text { 8. (a) }(\text { area }=) 45 \times 25 \\ & 1125\left(\mathrm{~m}^{2}\right) \\ & (\text { Cost }=) 1125 \times(£) 85 \\ & (£) 95625 \end{aligned}$	M1	
	A1	
	M1	FT 'their area'
	A1	
		If no marks awarded
		Award SC2 for sight of (£)11900
Look for - spelling - clarity of text explanations, - the use of notation (watch for the use of ' $=$ ', $\mathfrak{£}, \mathrm{m}^{2}$ being appropriate)		
	Q	QWC2 Presents relevant material in a coherent and
	W	logical manner, using acceptable mathematical
	C	form, and with few if any errors in spelling,
		punctuation and grammar.
		QWC1 Presents relevant material in a coherent and
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps		logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
(b) $60(\pm 2) / 360$ ISW	B2	Award B1 for sight of $60\left(\pm 2^{\circ}\right)$ or for a numerator < 90 with a denominator of 360
	8	
9. $2 x+x+7=25$	B1	FT until $2^{\text {nd }}$ error
$\begin{aligned} 3 x & =18 \\ x & =6 \end{aligned}$	B1	This line implies $1^{\text {st }} \mathrm{B} 1$
	B1	Answer only of ($x=$) 6 award B0 B0 B1
	3	
$10.16000 \times 6.5 \div 100$ OR $16000 \times 6.5 \times 5$$\times 5 \quad$ OR $\div 100$Simple interest $=(\mathfrak{f}) 5200$Total paid $(16000+5200=(£) 21200$	M1	Or sight of 1040
	m1	
	A1	
	B1 4	FT their 5200 provided M1 awarded
11.(a) All 8 points correctly plotted (b) (£) 40 (c) Implies "no" with a reason (e.g. points scattered, or not in line, etc.)	B2	B1 for at least 6 points correctly plotted, OR all
	B1	correctly plotted but joined dot-to-dot OR FT from their graph for their oldest clock
	E1	Accept statements saying it is 'not positive and not negative correlation'
	4	

UNIT 2 - HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline Applications Unit 2 January 2013 Higher Tier GCSE \& \& Final \\
\hline 12.(a) \(\mathrm{t}+\mathrm{f} \leq 30\) and \(3 \mathrm{t}+4 \mathrm{f} \geq 80\) \& B3 \& \begin{tabular}{l}
B2 for \(\mathrm{t}+\mathrm{f} \leq 30\) and \(3 \mathrm{t}+4 \mathrm{f} . . .80\), \\
or \(\mathrm{t}+\mathrm{f} \ldots 30\) and \(3 \mathrm{t}+4 \mathrm{f} \geq 80\), \\
or \(\mathrm{t}+\mathrm{f}<30\) and \(3 \mathrm{t}+4 \mathrm{f}>80\) \\
B1 for either inequality correct, \\
or \(\mathrm{t}+\mathrm{f} . . .30\) and \(3 \mathrm{t}+4 \mathrm{f}\)... 80 \\
FT their inequalities if possible provided similar level of difficulty
\end{tabular} \\
\hline (b) Line \(\mathrm{t}+\mathrm{f}=30\) drawn correctly \& B1 \& \\
\hline Line \(3 \mathrm{t}+4 \mathrm{f}=80\) drawn correctly \& B1 \& \\
\hline The region indicated \& B1 \& FT from 2 lines with at least one line drawn correctly \\
\hline (c) Any correct point from the correct region, using whole numbers only \& \[
\begin{gathered}
\text { B1 } \\
7
\end{gathered}
\] \& OR FT their graph for whole number solutions only \\
\hline 13.(a) Calculation that would lead to a correct answer for TOTAL 2009, 2010, 2011 and 2012 \& M1 \& Calculations are:
2009: \(\quad 2300\)
2010: \(\quad 2300 \times 3\)
2011: \(\quad 2300 \times 3 \times 3\)
2012:
\(2300 \times 3 \times 3 \times 3\) \\
\hline 92000 (T-shirts) \& A2 \& \begin{tabular}{l}
A1 for correct answer for 2009, 2010, 2011 \& 2012 as \(2300,6900,20700,62100\) T-shirts SC1 for an answer of 6900,20700 or 62100 Tshirts only \\
Treat starting with 2009 as \(2300 \times 3\) and continuing with appropriate pattern of trebling as MR-1 and mark accordingly
\end{tabular} \\
\hline (b) Idea that 3.60 is \(112 \%\) of previous year price \& B1 \& \\
\hline \(3.60 \div 1.12^{3}\) \& M2 \& M1 for equivalent of \(3.60 \div 1.12\) \\
\hline (f) 2.56 \& A1 \& \\
\hline (c) Strategy to use quadratic similarity \& S1 \& \begin{tabular}{l}
This may be linear or cubic \\
The following answers imply S1: for linear, 6.468 or 6.46 or 6.47 for cubic, 12.677 or 12.67 or 12.68
\end{tabular} \\
\hline \begin{tabular}{l}
Sight of \(50^{2}\) with \(70^{2}\), or \(5^{2}\) with \(7^{2}\), or \(1.4^{2}\), or \((5 / 7)^{2}\) \(\left(4.62 / 50^{2}\right) \times 70^{2}\) or equivalent \\
(£) 9.06
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
11
\end{gathered}
\] \& Accept (f)9.05(52) \\
\hline 14.(a) Area of 5 faces of the cuboid \(2304\left(\mathrm{~cm}^{2}\right)\) \& B1 \& \((144+540+540+540+540=2304)\) \\
\hline Slant height \({ }^{2}=18^{2}+6^{2}(=360)\) \& M1 \& Or alternative complete method \\
\hline Slant height \(=18.97 \ldots\) or \(19(\mathrm{~cm})\) \& A1 \& \\
\hline Area 1 triangular face \(=1 / 2 \times 12 \times{ }^{\prime}\) slant height \({ }^{\prime}\) (=113.84..) \& M1 \& FT for their 18.97 , provided not 18 \\
\hline OR 4 triangular areas (\(=455.36798 \ldots\)) \& A1 \& Rounded or truncated \\
\hline \[
\begin{aligned}
\& \text { Total area } 2759.36798 \ldots\left(\mathrm{~cm}^{2}\right) \\
\& (£ 0.045 \times \text { Total area }=)(£) 124.17
\end{aligned}
\] \& B1 \& FT provided includes 'their area of 4 triangles' and 'their total area of rectangles' only if at least 4 rectangles have been considered Allow rounding or truncation errors if method clear, however if consistent rounding or truncation errors then penalise \(P R-1\) \\
\hline (b) Appropriate sketch (may be implied) with realisation that \(1^{\text {st }}\) step is to find the height/length of the cylinder, then subtraction from 22 will give the height of the cone \& S1

M1
A1 \&

\hline $\Pi \times 6^{2} \times$ height of cylinder $=1018$ \& M1 \& FT '22-their height of cylinder'

\hline Height of the cylinder 9 9 (.00..cm) \& A1
A1 \& CAO from correct working

\hline Volume cone $=1 / 3 \times \Pi \times 6^{2} \times(22$ - height of cylinder $)$ Volume cone, answers in range 489.8 to $490.3\left(\mathrm{~cm}^{3}\right)$ Overall volume 1.5 (litres) \& $$
\begin{aligned}
& \text { A1 } \\
& 12
\end{aligned}
$$ \& CAO from correct working

\hline
\end{tabular}

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk

