GCSE MARKING SCHEME

MATHEMATICS UNITISED
NOVEMBER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2013 examination in GCSE Mathematics Unitised. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

UNIT 1 - FOUNDATION TIER

\begin{tabular}{|c|c|c|}
\hline NOVEMBER 2013 UNIT 1 Foundation \& Mark \& Final MARK SCHEME (14/11/13) Comments (Page 1) \\
\hline \begin{tabular}{l}
1. (a) 3024756 \\
(b) 63000 \\
(c) (i) 408 \\
(ii) \(2 / 3\) or equivalent. ISW.
\end{tabular} \& \[
\begin{gathered}
\hline \text { B1 } \\
4
\end{gathered}
\] \& Accept if given in words. \\
\hline \(\begin{array}{llll}\text { 2. } 200 \text { grams } \& \\ \& 600 \mathrm{~m}^{2} \& 324 \mathrm{~m} \& \\ \& \& \& 2000 \mathrm{~m}^{3}\end{array}\) \& \[
\begin{gathered}
\text { B1 } \\
4 \\
\hline
\end{gathered}
\] \& Accept any unambiguous indication in each case. \\
\hline \begin{tabular}{l}
3. (a) Thursday. \\
(b) 43 \\
(c) \(13 \times(£) 12.5(0)\)
\[
=(£) 162.5(0)
\] \\
(d) Any indication that the orders taken on Thursday were worth more money. \\
e.g. 'Prices were higher (on Thursday)' \\
'She gave discounts on Wednesday' \\
'The size of each order was smaller on Wednesday'.
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
E1
\end{tabular} \& \begin{tabular}{l}
Do not accept 11 . \\
SC1 for (£)225 or (£)137.5(0) or (£)300 or (£)237.5(0) For any comment that refers to 'prices' as opposed to number of orders.
\end{tabular} \\
\hline \begin{tabular}{l}
4. \\
(a) \(12 \times 30(\mathrm{p})+(\mathfrak{f}) 5\) AND an attempt to multiply ' 12 by 30 ' or ' 12 by \(0 \cdot 3\) ' AND adding 500 or 5 .
\[
=(\mathfrak{£}) 8.6(0) \text { or } 860(\mathrm{p})
\] \\
(b) \(\frac{(£) 7.4(0)-(£) 5}{0.3(0)}\) or equivalent. \(=8\) (passengers)
\end{tabular} \& M1
A1
M1
M1
A
4 \& \begin{tabular}{l}
Penalise consistent attempt in (a) and (b) to differentiate between driver and passengers -lonce only. Do not penalise 'mixed units' at this stage. \\
Allow \(£ 8.60\) p but \(£ 860\) or 8.60 p is A0. \\
For correct substitution with subtraction and division. \\
Allow division by 30 for M1. \\
Accept an embedded answer.
\end{tabular} \\
\hline \begin{tabular}{l}
5. \\
Correct start time for \(2^{\text {nd }}\) programme. \\
First two programmes 'Nature Trails' and either 'Theatre Review' or 'The Comedy Slot'. \\
\(3^{\text {rd }}\) programme starts at \(12: 10\) \\
Correct start time for \(4^{\text {th }}\) programme. \\
Final two programmes 'Your Songs' and remaining one of 'Theatre Review' or 'The Comedy Slot'.
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
5
\end{tabular} \& \begin{tabular}{l}
a.m. and p.m. not required but penalise once if incorrect \\
F.T. 'their first programme'. \\
In either order. Accept unambiguous indication. \\
F.T. 'their third programme'. \\
In either order. Accept unambiguous indication.
\end{tabular} \\
\hline \begin{tabular}{l}
6. (Shop A) (£)20 \\
(Shop B) \(6 \times 4 \times 0.8\) or equivalent.
\[
=(£) 19.2(0)
\] \\
(Difference of) 80p or \(£ 0.8(0)\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
4
\end{tabular} \& \begin{tabular}{l}
F.T. their stated amounts. \\
Units required otherwise B0. Allow \(£ 0.80\) p
\end{tabular} \\
\hline \begin{tabular}{l}
7. \\
(a) Accurate drawing with lines of 6 cm and 4.5 cm meeting at \(90^{\circ}\). \\
'Steel cable' line drawn to top of mast. \\
(b) Actual length of steel cable given (75m)
\end{tabular} \& B2
B1
B2

5 \& | Allow $\pm 0.2 \mathrm{~cm}$ and $\pm 2^{\circ}$. Use overlay. |
| :--- |
| For all 3. B1 for 2 of them. |
| Must be in correct orientation. |
| B0 for 45 m or 60 m . Otherwise |
| F.T. an unambiguous line or distance from their drawing that represents the cable $\times 10$. Must give units. |
| B1 if no units or incorrect units given OR length on diagram given $(7.5 \mathrm{~cm})$. |
| B1 for an incorrect measurement seen to be correctly multiplied by 10 AND correct units given. Ignore sight of $75 \mathrm{~m}+60 \mathrm{~m}=135 \mathrm{~m}$ and allow $B 2$ for the 75 m . |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
NOVEMBER 2013 \\
UNIT 1 Foundation
\end{tabular} \& Mark \& Final MARK SCHEME (14/11/13) Comments (Page 3) \\
\hline \begin{tabular}{l}
10. Sight of (Won) 15, (Drew) 12 and (Lost) 9 \\
Correct pie chart drawn \\
(Angles are \(150^{\circ}, 120^{\circ}\) and \(90^{\circ}\))
\end{tabular} \& B1
B3

4 \& | May be implied by a correct pie chart. |
| :--- |
| F.T. their amounts. Allow $\pm 2^{\circ}$. Use overlay. |
| B3 for all correct and labelled. B2 for all correct but not labelled. B1 for one correct and labelled. |
| If no marks awarded for pie chart, then award M1 for equating 1 match to the correct number of degrees $\left(10^{\circ}\right)$. |

\hline | 11. (a) The question is biased or leading. |
| :--- |
| (b) Any two from, e.g. |
| 'No box for those who have never been', |
| ' 10 times is not exclusive', |
| 'No time period indicated'. | \& B1 \& | Accept any statement that implies question is biased or leading. Do not accept an answer that implies the question is biased because of the location. |
| :--- |
| B1 for each different reason (maximum of 2 marks). |

\hline | 12. |
| :--- |
| (a) Bearing of 040° from Moelfre. |
| Bearing of 335° from Hoylake. |
| Position marked or two lines intersecting. |
| (b) Correct three figure bearing given. | \& M1

M1
A1

B1

4 \& | $\pm 2^{\circ}$ (use overlay). |
| :--- |
| Allow the M marks for dots, crosses or any unambiguous indication that the correct bearings have been offered. |
| F.T. if at least M1 and two intersecting lines. (Lines must originate from Moelfre and Hoylake respectively and intersect at sea.) |
| F.T. their ship's position. Allow $\pm 2^{\circ}$. |

\hline | 13. (a) (Volume $=) \pi \times 3^{2} \times 4$ $=113 \cdot 1\left(\mathrm{~m}^{3}\right) \text { OR } 36 \pi\left(\mathrm{~m}^{3}\right)$ |
| :--- |
| (b) Correct strategy. $\begin{gathered} \frac{113100(\mathrm{l})}{1800(\mathrm{l})} \text { OR } \frac{113 \cdot 1\left(\mathrm{~m}^{3}\right)}{1 \cdot 8\left(\mathrm{~m}^{3}\right)} \text { OR } \frac{113100000\left(\mathrm{~cm}^{3}\right)}{1800000\left(\mathrm{~cm}^{3}\right)} \\ =62 \cdot 8(\ldots . .) \quad \text { OR } 20 \pi \\ =62 \text { (minutes) } \end{gathered}$ | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { S1 } \\
\text { M1 } \\
\\
\text { A1 } \\
\text { A1 } \\
6 \\
\hline
\end{gathered}
$$

\] \& | Also $\pi \times 300^{2} \times 400$ |
| :--- |
| Accept answers in the range $113 \mathrm{~m}^{3}$ to $113.2 \mathrm{~m}^{3}$ or equivalent in cm^{3} (e.g. 113000000) |
| Allow S1 for sight of 'their volume' \div 'digits 18 ' |
| F.T 'their volume' from (a). Incorrect 'compensating' conversion errors that may lead to an answer of $62 \cdot 8 \ldots$ is MOA0A0. |
| For truncating to nearest whole number of minutes. |

\hline 14. $\begin{array}{lll} & 17000 & \\ & \underline{2040} & \\ & \frac{1795.2(0)}{13164.8(0)} & \\ & & \\ & & 1579.77(6) \\ & & \text { (£) } 11600\end{array}$ \& B1
M1

A1
A1

4 \& | For the evaluation of a correct 12% OR Sight of 0.88 (6120, 10880 or 23120 implies 3×2040 and gains B1). |
| :--- |
| For attempting to find and subtract 3 different 12%. OR $\quad 17000 \times 0 \cdot 88^{3}$. |
| F.T. one error. |
| Treat calculation for 2 or 4 years as a misread. Penalise an appreciation calculation -1 . |

\hline
\end{tabular}

UNIT 1 - HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline NOVEMBER 2013 UNIT 1 Higher \& Mark \& Final MARK SCHEME (14/11/13) Comments (Page 1) \\
\hline \begin{tabular}{l}
1. (a) The question is biased or leading. \\
(b) Any two from, e.g. \\
'No box for those who have never been', ' 10 times is not exclusive', \\
'No time period indicated'.
\end{tabular} \& B1
B2

3 \& | Accept any statement that implies question is biased or leading. Do not accept an answer that implies the question is biased because of the location. |
| :--- |
| B1 for each different reason (maximum of 2 marks). |

\hline | 2. |
| :--- |
| (a) Bearing of 040° from Moelfre. |
| Bearing of 335° from Hoylake. |
| Position marked or two lines intersecting. |
| (b) Correct three figure bearing given. | \& M1

M1
A1

B1

4 \& | $\pm 2^{\circ}$ (use overlay). |
| :--- |
| Allow the M marks for dots, crosses or any unambiguous indication that the correct bearings have been offered. |
| F.T. if at least M1 and two intersecting lines. (Lines must originate from Moelfre and Hoylake respectively and intersect at sea.) |
| F.T. their ship's position. Allow $\pm 2^{\circ}$. |

\hline 3.

$$
\begin{aligned}
& 650 \times 43 \cdot 2 \\
&=28080 \text { (roubles) } \\
& \text { (Roubles left) } 6840
\end{aligned} \quad \begin{aligned}
6840 & \div 49 \cdot 5 \\
& (\mathfrak{(f)} 138.18
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
5
\end{gathered}
$$

\] \& | F.T. 'their 28080' - 21240 . |
| :--- |
| F.T. 'their 6840 '. |
| $£ 138.1818$.... is A0. Mark final answer. |

\hline 4.

$$
\begin{array}{cc}
9 \mathrm{C}+32 \times 5=140 \times 5 & \text { OR } \frac{9 \mathrm{C}=140-32}{5} \\
\mathrm{C}=\frac{140 \times 5-32 \times 5}{9} & \text { OR }(\mathrm{C}=) \frac{140-32}{9} \times 5 \\
=60\left({ }^{\circ} \mathrm{C}\right)
\end{array}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
3
\end{gathered}
$$

\] \& | For correct substitution in this form. |
| :--- |
| Accept an embedded answer. |

\hline $$
\begin{aligned}
& \text { 5. } \begin{array}{r}
\text { Correct method to find area of trapezium. } \\
(\text { Trapezium area }=) \quad 34\left(\mathrm{~cm}^{2}\right) \\
(\text { Area of whole shape }=) \\
59 \times 600 \div 250 \times\left(\mathrm{fm}^{2}\right) 6 \\
\\
=(£) 849.6(0)
\end{array}
\end{aligned}
$$ \& M1

A1
B1
M2

A1 \& | Area of trapezium OR Area of (rectangle + triangle). C.A.O. |
| :--- |
| F.T. 'their 34 ' +25 . |
| F.T. 'their 59'. |
| M1 for any one of the operations. |
| Dependent on the M2. |

\hline | Look for |
| :--- |
| - spelling |
| - clarity of text explanations, |
| - the use of notation (watch for the use of ${ }^{‘}=$ ', £ and cm^{2} being appropriate) |
| QWC2: Candidates will be expected to |
| - present work clearly, with words explaining process or steps |
| AND |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer |
| QWC1: Candidates will be expected to |
| - present work clearly, with words explaining process or steps |
| OR |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer | \& QWC2

8 \& | QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| :--- |
| QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR |
| Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline NOVEMBER 2013 UNIT 1 Higher \& Mark \& Final MARK SCHEME (14/11/13) Comments (Page 2) \\
\hline 6. \(37 \times \frac{17}{5}\)
\[
\begin{aligned}
\& \quad=1254 / 5 \text { or equivalent } \\
\& 2 \text { hours } 5 \text { minutes } 48 \text { seconds }
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\\
\hline
\end{gathered}
\] \& F.T. only if time in minutes greater than 60 and includes a fraction \(\neq 1 / 2\). Accept F.T. answers to nearest second. \\
\hline \begin{tabular}{l}
7. (a) (Volume \(=\)) \(\pi \times 3^{2} \times 4\)
\[
=113 \cdot 1\left(\mathrm{~m}^{3}\right) \text { OR } 36 \pi\left(\mathrm{~m}^{3}\right)
\] \\
(b) Correct strategy.
\[
\begin{gathered}
\frac{113100(\mathrm{l})}{1800(\mathrm{l})} \text { OR } \frac{113 \cdot 1\left(\mathrm{~m}^{3}\right)}{1 \cdot 8\left(\mathrm{~m}^{3}\right)} \text { OR } \frac{113100000\left(\mathrm{~cm}^{3}\right)}{1800000\left(\mathrm{~cm}^{3}\right)} \\
=62 \cdot 8(\ldots \ldots) \quad \text { OR } 20 \pi \\
=62(\text { minutes })
\end{gathered}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
S1 \\
M1 \\
A1 \\
A1 \\
6
\end{tabular} \& \begin{tabular}{l}
Also \(\pi \times 300^{2} \times 400\) \\
Accept answers in the range \(113 \mathrm{~m}^{3}\) to \(113.2 \mathrm{~m}^{3}\) or equivalent in \(\mathrm{cm}^{3}\) (e.g. 113000000) \\
Allow S1 for sight of 'their volume' \(\div\) 'digits 18 ' \\
F.T 'their volume' from (a). Incorrect 'compensating' conversion errors that may lead to an answer of \(62 \cdot 8 \ldots\) is MOA0A0. \\
For truncating to nearest whole number of minutes.
\end{tabular} \\
\hline \begin{tabular}{lcc}
8. Showing \& 8 sheep with 1 lamb \& \\
\& 10 sheep with 2 lambs \& \\
\& 6 sheep with 3 lambs \\
\& \(8 \times 1+10 \times 2+6 \times 3\) \& \\
\& \multicolumn{3}{c}{\(\div 24\)} \& \\
\& \& \(=1.9\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
m1 \\
A1 \\
4
\end{tabular} \& \begin{tabular}{l}
F.T. their values. \\
Must be to 1 decimal place with no errors in working. Alternative method
\[
\begin{array}{rrr}
1 \times 120+2 \times 150+3 \times 90 \& \text { M1 } \\
\div 360 \& \mathrm{~m} 2 \\
=1.9 \& \text { A1 }
\end{array}
\]
\end{tabular} \\
\hline 9. \(86 \%\) ミ 3655
\[
\text { (Last year) } \quad \begin{aligned}
\frac{3655}{86} \& \times 100 \\
\& =4250
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\\
\text { A1 } \\
3
\end{gathered}
\] \& Accept any indication. Or equivalent e.g. 3655 / 0.86. \\
\hline \begin{tabular}{l}
\[
\text { 10. (a) Sight of } 305(\mathrm{~cm}) \text { or } 3.05(\mathrm{~m}) \text { AND }
\] \\
(b) Sight of 295(cm) or \(2.95(\mathrm{~m})\) AND \(4.05(\mathrm{~cm})\) or \(0.0405(\mathrm{~m})\)
\[
\begin{aligned}
\& \frac{295}{4.05} \text { or } \quad \\
\& \quad \begin{array}{r}
0 \cdot 95 \\
\\
\\
=72 \cdot 8 \ldots
\end{array} \text { AND NO }
\end{aligned}
\]
\end{tabular} \& B1
M1
A1
B1
M1
A1

6 \& | The B1 may be awarded if these values are seen in (a) or in (b) and need not be of the same units. |
| :--- |
| FT 'their 305^{\prime} ', provided it is >300 and ≤ 310 AND |
| 'their 3.95 ', provided it is ≥ 3 and <4 |
| $77 \cdot 2 \ldots$. is A 0 . |
| The B1 may be awarded if these values are seen in (a) or in (b) and need not be of the same units. |
| FT 'their 295', provided it is ≥ 290 and <300 AND |
| 'their 4.05', provided it is >4 and ≤ 5 |
| Alternative methods |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline NOVEMBER 2013 UNIT 1 Higher \& Mark \& Final MARK SCHEME (14/11/13) Comments (Page 3) \\
\hline 11.
\[
\begin{array}{ll}
120 \div 3 \& =40 \text { (m.p.h.) } \\
60 \div 30 \& \begin{array}{ll}
(=2)
\end{array} \\
\& \text { Total time }=5 \text { (hours) }
\end{array}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
\] \& F.T. (180-'their 120 ') / (\(0.75 \times\) 'their 40 '). \\
\hline \begin{tabular}{l}
12. (a) One correct \(70 \%\) calculated \\
At least 4 attempts at repeated \(70 \%\) of different values. 5 correct values \\
\(7, \quad 4 \cdot 9, \quad 3 \cdot 43, \quad 2 \cdot 40(1)\) and \(1 \cdot 68(07)\) All plotted correctly and not joined. \\
(b) Some indication that the heights indicated between the bounces would not be correct.
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
P1 \\
E1 \\
5
\end{tabular} \& \begin{tabular}{l}
Allow only arithmetical errors. \\
All five correct (to 1dp) \\
F.T. their values if M1 awarded. \\
Accept plots within \(1 / 2\) a 'small square'. \\
Plotting \((0,10)\) not required but P0 if incorrect plot. \\
Correct plots imply previous B1,M1,A1. \\
E.g. 'there is no \(1 \frac{1}{2}\) bounce', \\
'We don't know what happens in-between (bounces)'.
\end{tabular} \\
\hline \begin{tabular}{l}
13. (a)
\[
\begin{aligned}
(\operatorname{Arc} \mathrm{AB}= \& \frac{70}{360} \times 2 \times \pi \times 12 \\
= \& 14 \cdot 6(6 \ldots)(\mathrm{cm}) \text { or } \frac{14 \pi}{3}
\end{aligned}
\] \\
(b) Use of \(\frac{70}{360} \times \pi \times 12^{2} \quad\) OR \(\quad \frac{70}{360} \times \pi \times 8^{2}\)
\[
\begin{array}{ll}
=87 \cdot 9(6 \ldots .)\left(\mathrm{m}^{2}\right) \& \text { OR } \\
\text { OR } 28 \pi \& \text { OR } 112 \pi / 9
\end{array}
\] \\
(Shaded area)
\[
\begin{aligned}
\& 3 \frac{70}{360} \times \pi \times 12^{2}-\frac{70}{360} \times \pi \times 8^{2} \\
\& =48 \cdot 8(7 \ldots)\left(\mathrm{m}^{2}\right) \text { OR } \frac{140}{9} \pi
\end{aligned}
\]
\end{tabular} \& M1
A1

M1
A1
M1
A1

6 \& | Allow M1 for (Major arc AB =) $\quad \frac{290}{360} \times 2 \times \pi \times 12$ Accept answers between 14.65 and 14.7 inclusive. Allow A1 for (Major arc $\mathrm{AB}=$) $60 \cdot 7(3 .$.$) or \frac{58 \pi}{3}$ Accept answers between 60.7 and $60 \cdot 8$ inclusive for the major arc. |
| :--- |
| Accept 87.9 to 88.0 inc. OR 39.0 to 39.15 inc. |
| This implies both M marks. ($70 / 360 \times \pi \times 80$ is M1M1A1) |
| F.T. their values. |

\hline 14.

$$
\begin{gathered}
2 / 3 \times \pi \times \mathrm{R}^{3}+2 / 3 \times \pi \times(\mathrm{R} / 5)^{3}=456 \\
\mathrm{R}^{3}=\frac{456 \times 125 \times 3}{2 \times \pi \times 126} \quad \text { or equivalent } \\
=216 \\
\text { (Radius =) } 6(\mathrm{~m})
\end{gathered}
$$ \& M2

A1
A1
A1

5 \& | M1 if $\mathrm{R}^{3} / 5$ is used. Allow M1 if $4 / 3$ used instead of $2 / 3$. |
| :--- |
| F.T. if M1 awarded. |
| F.T. 'their R^{3} ' if at least M1 awarded. Correct to 1 dp . SC1 for an answer of $6 \cdot(01 .$.$) found by using large$ hemisphere alone. |
| Note use of r for smaller radius $\begin{array}{lll} 2 / 3 \times \pi \times r^{3}+2 / 3 \times \pi \times(5 r)^{3}= & 456 & M 2 \\ r^{3}=\frac{456 \times 3}{2 \times \pi \times 126} & \text { or equivalent } & \text { Al } \\ & =1.7279 \ldots & \text { Al } \\ (5 \times r)=6(\mathrm{~m}) & & \text { Al } \end{array}$ |
| Mark accordingly, but penalise premature approx -1 . |

\hline
\end{tabular}

UNIT 2 - FOUNDATION

2013 November Unit 2 (non calculator) Foundation Tier	Marks	Mark Scheme (14.11.13) (FINAL VERSION) Comments (Page 1)
1. (a) Three hundred and eighty four thousand, (and) four hundred (km) (b) 960 (c) 517 (d) (i) 29 (ii) 36 (iii) 56 (iv) 8 (e) $($ Number of girls $=) 6$ (Total number of pupils $=18+6$) (=) 24	$\begin{gathered} \text { B1 } \\ 9 \end{gathered}$	FT 'their 6' if $18 \div 3$ o.e. is seen
2. hexagon cube rhombus cylinder	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	
3. (a) impossible (b) likely	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ 2 \end{gathered}$	
4. (a) (i) multiply the previous term by 3 (ii) subtract 8 from the previous term (b) $20 / 100 \times(\mathfrak{\text { £ }} \mathbf{6 0}$ OR 10% of $(\mathfrak{£}) 60=(£) 6$ and $2 \times(£) 6$ (£) 12	B1 B1 M1 A1 4	Accept $\times 3$ Accept -8 Any correct method for finding 20\% Ignore further working. A0 for 12% SC1 for 48 provided M0.
5. (a) 10/18 I.S.W. (= 5/9) (b) 0 or $0 / 18$	B2 B1 3	B1 for a numerator of 10 in a fraction less than 1. B1 for a denominator of 18 in a fraction less than 1. NB Penalise -1 once only for use of words such as ' 10 out of 18 ', ' 10 in 18 '. or ' $10: 18$ '. When both fraction and wrong notation seen, DO NOT penalise wrong notation. SC1 for an answer of $13 / 21$. Do not accept 'impossible'. FT $0 / 21$ from (a) if denominator of 21 used in (a)
6. (a) $13 a-2 b$ as an expression (b) (i) (£) $7 n$ (ii) $x-4$ (m)	B2 B1 B1 4	In all parts, mark final answer. B1 for $\mathrm{k} a+\mathrm{m} b$ where $k=13$ or $\mathrm{m}=-2$ B1 for $13 a+-2 b$ B1 for both $13 a$ and $-2 b$ given separately but not as $13 a-2 b$ Ignore units. Allow $7 \times n$ or $n \times 7$ or $n 7$. Ignore units.
7. (a) 78 (cm) (b) (0).585 (litres) $585 / 1000$ o.e.	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ 2 \end{gathered}$	
$\begin{aligned} & \text { 8. Sight of } 3 / 5 \\ & 3 / 5 \times(£) 180 \\ & (12 \times 9=£) 108 \end{aligned}$	B1 M1 A1 3	Alternative methods: $(£) 180-2 / 5 \times 180$ M1 $(180-£) 72$ B1 $(£) 108$ A1 OR $2 / 5 \times(£) 20(=8)$ M1 $(20-8=\mathfrak{£}) 12$ B1 $(12 \times 9=£) 108$ A1

\begin{tabular}{|c|c|c|}
\hline 2013 November Unit 2 (non calculator) Foundation Tier \& Marks \& Mark Scheme (14.11.13) (FINAL VERSION) Comments (Page 2)

\hline 9 If $x=$ number of cartridges, correct evaluation for $\mathrm{x} \geq 3$ for Offer A correct evaluation for $\mathrm{x} \geq 3$ for Offer B for $\mathrm{x}=3$, correct evaluation for A and B OR working or a statement implying that at least 4 cartridges must be bought for Offer B for $x=4$, correct evaluation for A and B OR implied correct evaluation for A and B e.g. a comparison between costs for $\mathrm{x}=4$ implied by correct extra amount of $£ 4$ for 4th cartridge for Offer B (rather than $£ 7$ for A) Conclusion that $\mathrm{x}=4$. \& B1
B1
B1

B1

B1 \& Offer A: $£ 14$ and Offer B: $£ 21$
Offer A: $£ 21$ and Offer B: $£ 18$
SC 2 for answer of 4 with no working

\hline | QWC: Candidates would be expected to |
| :--- |
| - show clearly how they arrived at their solution |
| - have few errors in mathematical form, spelling, punctuation and grammar |
| QWC2: Candidates will be expected to |
| - present work clearly, with words explaining process or steps AND |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units $(\mathfrak{£})$ in their working |
| QWC1: Candidates will be expected to |
| - present work clearly, with words explaining process or steps OR |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar, and include units (\mathfrak{f}) in their working | \& QWC2 \& | QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| :--- |
| QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR |
| evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. |
| QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. A final unsupported statement only gets QWC0 |

\hline 10. Given points correctly plotted on suitable axes

$$
\begin{gathered}
\text { Coordinates are }(-4,-3) \\
\operatorname{OR}(6,-7) \\
\operatorname{OR}(4,11)
\end{gathered}
$$ \& B2

B1

3 \& | B2 for 3 correct plots, B1 for 2 correct plots, B0 if all coordinates reversed. |
| :--- |
| Penalty -1 for unsuitable labelling of axes FT 'their plots', if parallelogram drawn, for final B1 only. |
| Allow B3 if coordinates of $4^{\text {th }}$ vertex given as $(-4,-3)$ or $(6,-7)$ or $(4,11)$ with no drawing shown. |

\hline
\end{tabular}

2013 November Unit 2 (non calculator) Foundation Tier	Marks	Mark Scheme (14.11.13) (FINAL VERSION) Comments (Page 3)
11. (a) (11) 14 16 17 20 22 21 24 (26) (b) (i) $4 / 9$ (ii) $\begin{array}{r} 4 / 9 \times 54 \\ =24 \end{array}$		B1 for at least 4 correct entries FT their table if complete B1 for a numerator of 4 in a fraction less than 1. B1 for a denominator of 9 in a fraction less than 1. NB Penalise -1 for use of words such as ' 4 out of 9 ', ' 4 in 9 '. or ' $4: 9$ '. When both fraction and wrong notation seen, DO NOT penalise wrong notation. FT their (b)(i) if positive fraction less than 1.
12. Angle $\mathrm{ABC}=78\left(^{\circ}\right)$ OR sight of correct obtuse angle at B of $102\left({ }^{\circ}\right)$ $(x=[180-78] \div 2$ $(x=) 51\left(^{\circ}\right)$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 3 \\ \hline \end{gathered}$	Check for answers written on diagram Implies B1 FT 'their 102 ' $\div 2$
13. (a) Correct reflection (b) Correct tessellation of at least 7 additional interlocking kites (not all in one row in one direction)	$\begin{gathered} \mathrm{B} 2 \\ \mathrm{~B} 2 \\ 4 \end{gathered}$	B1 for a reflection in any horizontal line or in $\mathrm{x}=-1 \quad$ or sight of the line $\mathrm{y}=-1$ B1 for 3 additional correct interlocking kites (each sharing at least one common side).
14. (a) $\begin{aligned} & x+3 x+16 x=1 \\ & x=1 / 20 \text { or } 0.05 \text { or equivalent } \quad \text { ISW } \end{aligned}$ (b) (Statement that Stephen is incorrect and) a correct explanation e.g. fraction (proportion) of tickets bought would be the same.	M1 A1 E1 3	Use of 'total probability $=1$ ' Accept 5% only if specified as a percentage. Accept alternative explanations; e.g. 'It may decrease his chance of winning a prize as more people may be tempted to buy tickets'.
15. (a) (i) $12 t$ (ii) p^{6}	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept $12 \times t^{9}$ or $t^{9} \times 12$
$\text { (b) } \begin{gathered} (x-2=) 8 x+12 \\ 7 x=-14 \quad \text { or } \\ x=-2 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until $2^{\text {nd }}$ error Correct clearing of bracket Collecting terms correctly FT $\mathrm{a} x=\mathrm{b}$ where $\mathrm{a} \neq 1$ and answer must be expressed as integer if fraction can be cancelled to an integer
c) Method that produces at least 2 correct prime factors. Sight of correct factors ($2,2,3,3,11$) in any order $2^{2} \times 3^{2} \times 11$		FT until $2^{\text {nd }}$ error. Ignore 1s seen. FT their factors (with at least one index >1 used). Do not ignore 1s within this product. B0 for list or sum.

UNIT 2 - HIGHER TIER

Unit 2 GCSE Maths November 2013 Higher Tier Markscheme 14.11.13	Mark	Comment
4. (a) (i) $12 t^{9}$ (ii) p^{6} (b) $8 x<72$ or $-72<-8 x$ $x<9$	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	Accept $12 \times \mathrm{t}^{9}$ or $\mathrm{t}^{9} \times 12$ FT until second error B0 for use of = sign, unless replaced for final answer.
5. (a) Method that produces at least 2 correct prime factors Sight of correct factors $(2,2,3,3,11)$ in any order $2^{2} \times 3^{2} \times 11$ (b) 11	M1 A1 B1 B1 4	FT until $2^{\text {nd }}$ error Ignore 1s seen FT their factors (with at least 1 index >1 used) (provided 'their factors' arise from an attempt to divide). Do not ignore 1 s within the product. B0 for a sum or list. FT from (a)
6. (Numerator is) $900 \times 0 \cdot 1$ or appropriate approximations (Denominator is) 0.09 or 0.1 1000	B1 B1 B1 3	Accept 1000 and $0 \cdot 108$ respectively. Accept 9 or 10 if an attempt has been made to multiply numerator by 100 . FT for answers from 900 to 1100 inclusive. Unsupported 900 or 1000 gets 3 marks, but do not ignore incorrect working.
7. (a) $x+3 x+16 x=1$ $x=1 / 20$ or 0.05 or equivalent ISW (b) (Statement that Stephen is incorrect and) a correct explanation e.g. fraction (proportion) of tickets bought would be the same.	M1 A1 E1 3	Use of 'total probability $=1$ ' Accept 5% only if specified as a percentage. Accept alternative explanations such as 'It may decrease his chance of winning a prize as more people may be tempted to buy tickets'
8. (a) $3 / 4$ (b) Correct gradient $(=-1 / 2)$ OR correct y-intercept plotted $(0,3)$ OR any two other points calculated or plotted correctly (with no incorrect points) Points joined by one correct straight line, no stray points	B1	$y=3 / 4 x-5 / 4$ is insufficient, unless $3 / 4$ indicated (e.g. circled). $\text { e.g. }(1,2 \cdot 5)(2,2)(3,1 \cdot 5)(4,1)(5,0 \cdot 5)(6,0)$ Single straight line, do not ignore incorrect points joined. CAO. Line should be of 'reasonable' sufficient length (halfway across grid)
9. (a) (i) $8 n-3$ (ii) $(n-1)^{2} \quad$ OR $\quad n^{2}-2 n+1$ (b) Strategy of solving an appropriate equation or inequality $130-4 n<0$ or $130-4 n=0$ or equivalent 130/4 or equivalent (position number of) 33	B2 B2 S1 M1 A1 7	B1 for $8 n$ B1 for $a n^{2}+b$, with $a \neq 0$ OR $(a n+b)^{2}$, with $a \neq 0$ OR $n^{2}-2 n+k$ Accept a 'trial and improvement' approach provided at least two trials (one above and one below 33) Trial and improvement gives rise to -2 SC2 for unsupported '33'. O marks for unsupported -2 with no reference to position number.
10. Enlargement Scale factor of 2 Centre of enlargement at $(2,3)$	B1 B1 B1 3	Accept alternative terminology e.g. 'multiplier is 2 ' Do not accept an incorrect statement e.g. 'shape B is twice the size of shape A' SC1 for 2 or more 'rays' correctly drawn, intersecting at $(2,3)$ if B0, B0, B0.

Unit 2 GCSE Maths November 2013 Higher Tier Markscheme 14.11.13	Mark	Comment
11. $2 \mathrm{~s}+3 \mathrm{a}=2550, \mathrm{~s}+5 \mathrm{a}=2500$ Method to find the first variable Correct first variable Correct second variable (£) 1850	$\begin{gathered} \text { S1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { A1 } \\ 5 \end{gathered}$	Strategy of forming a pair of equations. (Do not penalise for not defining variables.) Allow 1 slip in multiplication, but not in equated variable. FT 'their $1^{\text {st }}$ variable' $\mathrm{s}=(£) 750, \mathrm{a}=(£) 350$ FT their values (provided S1, M1 awarded)
12. (a) Angle $\mathrm{ABC}=71\left(^{\circ}\right)$ Opposite angles in a cyclic quadrilateral add to $180\left({ }^{\circ}\right)$ (b) (obtuse) Angle AOC $=142\left({ }^{\circ}\right)$ Angle at the centre is twice the angle at the circumference Angle $\mathrm{ACO}=19\left({ }^{\circ}\right)$	B1 E1 B1 E1 B1 5	Check for answers written on diagram. E marks depend on B marks having been awarded. Accept an alternative circle theorem quotation if it has been used appropriately. FT twice 'their angle ABC ' (OR reflex angle $\mathrm{AOC}=218^{\circ}$ and $360^{\circ}-218^{\circ}=142^{\circ}$ Angle at the centre is twice the angle at the circumference) Stating the use of an isosceles triangle is not enough (must quote correct circle theorem) FT 'their angle AOC'
13. (a) $x=0.0888 \ldots . . \quad 10 x=0 \cdot 8888 \ldots .$. with an attempt to subtract $8 / 90$ or $4 / 45$ or equivalent e.g. $88 / 990$ (b) $1 / 4$ or $0 \cdot 25$ (c) $(\sqrt{ }(4 \times 5)-\sqrt{ } 5)^{2} \quad$ or $\quad 20-\sqrt{ } 20 \sqrt{ } 5-\sqrt{ } 20 \sqrt{ } 5+5$ $(\sqrt{5})^{2} \quad$ middle term $(\pm) 20$ 5 and rational	M1 A1 B2 M1 M1 A1 7	Or an alternative method. An answer of e.g. $0 \cdot 8 / 9$ or $8 \cdot 8 / 99$ gains M1 only. Mark final answer. Do not ignore incorrect cancelling. B1 for 4^{-1} or $1 / \sqrt{ } 16$ or $1 / 16^{1 / 2}$ or $(1 / 16)^{1 / 2}$ RHS method needs 3 of 4 terms correct; accept $\sqrt{ } 100$ as $\sqrt{ } 20 \sqrt{ } 5$
14. Translation horizontally to the right $(5,0)$ indicated correctly on the x-axis with the correct translation.	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \\ 2 \\ \hline \end{gathered}$	Accept labelling of 5 on the x-axis. SC1 for left shift with $(-1,0)$ or -1 indicated on the x-axis.
15. (a) either $6 / 10 \times 5 / 9$ or $3 / 10 \times 2 / 9$ $6 / 10 \times 5 / 9+3 / 10 \times 2 / 9$ with no incorrect additional terms $36 / 90$ (=2/5) (b) $9 / 10 \times 8 / 9 \times 7 / 8$ $=7 / 10$ OR $504 / 720$ or equivalent	B1 M1 A1 M1 A1 5	Must indicate 'no replacement' Do not ignore incorrect cancelling MR -1 for whole question for consistent use of incorrect total number of sweets (e.g. 9) Or $\mathrm{P}(\mathrm{SSS})+3 \mathrm{P}(\mathrm{SSL})+3 \mathrm{P}($ SLL $)+\mathrm{P}($ LLL $)$ (or its numerical equivalent) ISW

UNIT 3 FOUNDATION

2013 November UNIT 3 (calculator allowed) Foundation Tier Mark Scheme	Mark	Comments (page 1)
1. (a)(£) 3•5(0) or $350(\mathrm{p})$ (£) 1.92 or $192(\mathrm{p})$ (£) $1 \cdot 7(0)$ or $170(\mathrm{p})$ (£) $2 \cdot 25$ or $225(\mathrm{p})$ (b) $20-9.37$ or $2000-937$ (£) $10 \cdot 63$ or $1063(\mathrm{p})$ (c) $5 \cdot 49 \div 3$ or $549 \div 3$ (£) $1 \cdot 83$ or $183(\mathrm{p})$	$\begin{gathered} \text { B1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 8 \end{gathered}$	FT one error. Attempt to subtract or find the difference
2. (a) 127 (b) 138000 (c) 14.2	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	
3. Evidence of square counting 40-50 (squares) Candidate's area $\times 10\left(\mathrm{~cm}^{2}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \\ \hline \end{gathered}$	E.g. dots or marks in the squares. F.T. 'their area' $\times 10$ Final answer of 400-500 gets 3 marks.
4. (a) Attempt to use 60 minutes $=1$ hour in context. e.g. $\quad 4 \times 60+50$ OR 310/60 (Delay =) 20 (minutes) (b) $13: 50+3$ hours 15 minutes. 17:05 or 5:05 (pm) (c) Attempt to find time between 6:30 a.m. and 5:55 p.m. with correct interpretation of a.m. and p.m. 11 hours and 25 minutes.	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 6 \\ \hline \end{gathered}$	Sight of 290 (minutes) or $5.16(66 \ldots$) or 5.17 (hours) or 5 hours 10 minutes C.A.O. Attempt to add time Accept 11:25 or 11-25
5. (a) Drawing showing 2 and a half circles (b) Mon-36, Tues-16, Wed-18, Thur-22 (c) Ordering data $16,18,22,30,36$ Median 22 (d) Mon, Tues, Wed, Thur, Fri (or equivalent) along one axis Uniform scale and label for frequency or equivalent. Five bars at correct heights	B1 B2 M1 A1 B1 B1 B2 9	B1for any 2 or 3 correct answers. FT candidate's values from table. Or indicated on the bars themselves. FT from their table values. B1 for at least 3 correct bars on FT. B1 for unequal width bars.
6. Correct rectangle or square with sum of two sides equal to 12 and product of two sides greater than 32 . e.g. 6 by 6 or 7 by 5	B3	Any orientation. B2 for perimeter $=24 \mathrm{~cm}$ but area<32 cm^{2} eg. 3 by 9 or 2 by 10 B1 for area $>32 \mathrm{~cm}^{2}$ but perimeter $\neq 24 \mathrm{~cm}$ B1 for stating area $=32\left(\mathrm{~cm}^{\mathrm{s}}\right)$ and Perimeter $=24(\mathrm{~cm})$ B0 for 4 by 8 or 8 by 4

2013 November UNIT 3 (calculator allowed) Foundation Tier Mark Scheme	Mark	Comments (page 2)
7. Set dinner discount (£)2.34 Set dinner cost after discount (£)23•40-(£)2•34=(£)21•06 (Set dinner cost for each person $£ 7 \cdot 02$) Total general Menu cost $3 \times(\mathfrak{f}) 4 \cdot 50+3 \times(\mathfrak{£}) 1 \cdot 85+(\mathfrak{£}) 1 \cdot 59$ (£)20.64 General menu cost for each person (£) $20.64 \div 3$ $=(£) 6 \cdot 88$ (cheaper option) Look for - Spelling - Clarity of text explanations, - Consistent use of $£$ or p QWC2: Candidates will be expected to - Present work clearly, with words explaining process and steps AND - Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer. QWC1 : Candidates will be expected to - Present work clearly, with words explaining process or steps OR - Make few, if any, mistakes in mathematical form, spelling, punctuation and grammar in their final answer.	M1 A1 M1 A1 QWC 2 8	Alternative $0.9 \times 23 \cdot 40=21 \cdot 06$ for B2 FT 'their $£ 2.34$ ' from appropriate working. Total price or price per person may be seen. Ignore incorrect division if $(\mathfrak{f}) 21.06$ seen. Treat multiplication of price of set meal by 3 as misread. Alternative method if total cost not shown: (£) $1.59 \div 3=(£) 0.53$ for M1A1 $(\mathfrak{£}) 4.50+(\mathfrak{f}) 1.85+(\mathfrak{f}) 0.53=(\mathfrak{£}) 6.88 \text { for M1A1 }$ FT their costs so that correct division of their lower total by 3 gets M1 A1. QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar. OR Evident weakness in organisation of material but using acceptable mathematical form, with few, if any, errors in spelling, punctuation and grammar. QWC0 Evident weakness in organisation of material, and errors in use of mathematical form, spelling, punctuation and grammar.
8. Calculation A 3.46 Calculation B 2.(051828453....) Calculation C 3.65 Order B, A , C	$\begin{gathered} \text { B1 } \\ 4 \\ \hline 4 \end{gathered}$	CAO Rounded or truncated CAO FT candidate's values in ascending order.
9.(a) $\quad a=8$ (b) $2 y=16$ $y=8$ (c) $x / 3=10$ or $x+15=45$ $x=30$	B1 B1 B1 B1 B1 5	Accept embedded answers throughout
10. Cubing whole numbers. Trial and improvement shown. Answer of $(13 \times 13 \times 13=) 2197\left(\mathrm{~cm}^{3}\right)$	$\begin{gathered} \mathrm{S} 1 \\ \text { B2 } \\ 3 \end{gathered}$	Alternative method. Cube root of 2500 with appropriate rounding. B1 for $13 \times 13 \times 13$ or 13 cubed without 2197
11. A triangle with at least two correct lengths ($\pm 2 \mathrm{~mm}$) One line drawn correctly AND two intersecting arcs drawn from the ends of this line. Triangle correctly constructed using intersecting arcs with all 3 sides of the correct length ($\pm 2 \mathrm{~mm}$).	B1 M1 A1 3	Any orientation.

\begin{tabular}{|c|c|c|}
\hline 2013 November UNIT 3 (calculator allowed) Foundation Tier Mark Scheme \& Mark \& Comments (page 3)

\hline 12.Both heart rates correct AND Bethan identified as higher Alan 188.(8) Bethan 201.(8) \& B2

2 \& B1 for sight of one of 188(.8) or 201(.8)

\hline | 13. (a) All points plotted correctly |
| :--- |
| (b) Line of best fit with positive gradient and points above and below. |
| (c) (i)Identify worker C |
| (ii)Appropriate reading for 40 year old from candidate's line of best fit. | \& B2

B1
B1
B1

5 \& | B1 for at least 5 correct plots. Ignore line of best fit at this stage. Penalise -1 if joined point to point. |
| :--- |
| Worker C, named, described or identified on the graph. |
| Consistent with candidate's positive gradient line of best fit. |
| FT 'their (c)(i)'. |

\hline | 14. a) Michael with reason, e.g. "Michael because he took less time", "Michael finished in 40 sec ", "Michael, his line is steeper" |
| :--- |
| b) $50 \div 40$ or equivalent \quad OR $\quad 25 \times 60 / 20$ |
| m / s OR m/min |
| c) 8 (seconds) | \& | E1 |
| :--- |
| M1 |
| A1 |
| U1 |
| B1 |
| 5 | \& | Allow "Michael because he was faster" |
| :--- |
| M1A0 for use of e.g. $26 \div 20$ (misread from graph) If no marks awarded, SC 1 for answers of 1.04 or 62.5 (Jordan's speed in m / s or $\mathrm{m} / \mathrm{min}$) or $0.9 \ldots$ (speed for whole race) Must be appropriate. |

\hline | 15. One correct evaluation $4 \leq x \leq 5$ |
| :--- |
| 2 correct evaluations $4.2 \leq x \leq 4.35$ |
| One either side of 90 |
| 2 correct evaluations $4.25 \leq \mathrm{x} \leq 4.35$ |
| One either side of 90 |
| If evaluations not seen, accept 'too high' or 'too low'. $x=4.3$ | \& B1

B1
M1

A1 \& | \underline{x} | $\frac{x^{3}+3 x}{76}$ | 4.21 | $\frac{x}{x^{3}+3 x}$ |
| :--- | :--- | :--- | :--- |
| 4 | 140 | 4.22 | $87.24 \ldots$ |
| 5 | 81.221 | 4.23 | $88.37 \ldots$ |
| 4.1 | 86.688 | 4.24 | $88.94 \ldots$ |
| 4.2 | 92.407 | 4.25 | $89.51 \ldots$ |
| 4.3 | 98.384 | 4.26 | $90.08 \ldots$ |
| 4.4 | 104.625 | 4.27 | $90.66 \ldots$ |
| 4.5 | 111.136 | 4.28 | $91.24 \ldots$ |
| 4.6 | 117.923 | 4.29 | $91.82 \ldots$ |
| 4.7 | 124.992 | | |
| 4.8 | 132.349 | 4.35 | $95.36 \ldots \ldots$ |
| 4.9 | 132 | | |
| Watch for comparison to 0 | | | |

\hline $$
\begin{aligned}
& \text { 16. }\left(A B^{2}=\right) 3 \cdot 3^{2}+5 \cdot 6^{2} \\
& A B^{2}=42.25 \text { OR }(A B=) \sqrt{ } 42.25 \mathrm{OR} \\
& (A B=) 6.5(\mathrm{~cm})
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
3 \\
\hline
\end{gathered}
$$
\] \& Addition of squares seen or implied $(A B=) \sqrt{ }\left(3 \cdot 3^{2}+5 \cdot 6^{2}\right)$ alone gets M1A0A0

\hline | 17. a) Points plotted at mid-points of groups and straight lines connecting the points |
| :--- |
| b) Sight of the mid-points $125,135,145,155,165$ $\begin{aligned} & 125 \times 2+135 \times 8+145 \times 13+155 \times 22+165 \times 10 \\ & (250+1080+1885+3410+1650=8275) \end{aligned}$ $\begin{gathered} ‘ \text { Their } 8275 ’ \div 55 \\ \quad=150(.45) \end{gathered}$ | \& | B2 |
| :--- |
| B1 |
| M1 |
| m1 |
| A1 |
| 6 | \& | B1 at least 4 points plotted and joined correctly OR for all points plotted correctly but not joined, OR consistent horizontal translation within the limits of the groups. |
| :--- |
| Accept intention of straight lines. Ignore any lines outside the first and last points |
| FT their mid-points from within or at the bounds of the groups |

\hline
\end{tabular}

UNIT 3 - HIGHER TIER

Unitised Unit 3-Nov 2013 Higher Tier Mark scheme - Post Conference		
1. a) $x(x-6)$ $\text { b) } \begin{aligned} 7 x-3 x & =5-13 \\ 4 x & =-8 \end{aligned}$ $x=-2$	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	FT until $2^{\text {nd }}$ error
2. Suitable arcs drawn for 60° angle 60° angle drawn with line 8 cm long Arcs drawn 5.5 cm from the ends of the 8 cm lines 2 lines of length 5.5 cm joining to complete the kite	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ 4 \end{gathered}$	Use overlay. Allow $\pm 2^{\circ}$. Allow $\pm 2 \mathrm{~mm}$ for all lengths.
3. a) Michael with reason, e.g. "Michael because he took less time", "Michael finished in 40 sec ", "Michael, his line is steeper" b) $50 \div 40$ or equivalent \quad OR $25 \times 60 / 20$ 1.25 or equivalent OR 75 m / s OR $\mathrm{m} / \mathrm{min}$ c) 8 (seconds)	E1 M1 A1 U1 B1 5	Allow "Michael because he was faster" M1A0 for use of e.g. $26 \div 20$ (misread from graph) If no marks awarded, SC1 for answers of 1.04 or 62.5 (Jordan's speed in m / s or $\mathrm{m} / \mathrm{min}$) or $0.9 \ldots$ (speed for whole race) Must be appropriate.
4. a) $(6.5 \times 7)+(1 / 2 \times 7 \times 3)$ $\text { OR } \begin{aligned} \text { OR12 } & 2 \times 9.5+6.5) \times 3.5 \\ = & 56\left(\mathrm{~m}^{2}\right) \end{aligned}$ b) $56 / 15 \quad$ (= $=3.73 \ldots$...) 4 (tins needed)	$\begin{gathered} \text { M2 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	M1 for $(6.5 \times 7)+\ldots$ OR $\ldots .+(1 / 2 \times 7 \times 3)$ CAO FT 'their 56' Award provided rounding up required
5. a) $\pi \times 6^{2}$ Answers in the range 113 to 113.14 (...sq inches) b) (Area of small pizza =) 38.4 to 38.5 Perform calculations that allow comparison e.g. Large $113 \div 10=11.3$ to $11.314(\ldots)$ (sq inch per $£)$ or $10 \div 113=(£) 0.08(8)($ per sq inch $)$ Small $38.4 \div 4=9.6$ to 9.625 (sq inch per $£)$ or $4 \div 38.4=(£) 0.10$ (per sq inch)	M1 A1 B1 M2	Sight of area of small pizza FT their areas provided not 7 and 12. M1 for each calculation. Alternative method to get $£ 10$ worth of small pizza or $£ 4$ worth of large pizza B1 sight of 2.5 as a multiplier or divisor M1 for $2.5 \times 38.4(=96)$ OR $113 \div 2.5(=45.2)$ Alternative method to get comparable price for large or small pizza using similar areas: B1 for (12/7) $)^{2}$ or $2.9(38 \ldots)$ OR (7/12) ${ }^{2}$ or 0.3(40...) M1 for $2.9(38 \ldots) \times 4$ OR $0.3(40 \ldots) \times 10$ Al for $£ 11.75(5 \ldots)$ OR $£ 3.40(2 \ldots)$ SC2 for convincing argument e.g. 3 small pizzas give nearly the same area for $£ 2$ more
Statement implying that large pizza is better value	A1 6	If no marks awarded, SC 1 for convincing statement after comparing costs or areas

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Unitised Unit 3-Nov 2013 \\
Higher Tier \\
Mark scheme - Post Conference
\end{tabular} \& \& \\
\hline \begin{tabular}{l}
6. (1 part =) 500/10 \\
\((\) Composite steel \()=350(\mathrm{~kg}) \quad(\) Chromium \()=100(\mathrm{~kg})\) \\
\((\) Nickel \()=50(\mathrm{~kg})\) \\
\((\) Cost of Composite Steel \(=)(\mathfrak{£})(0) 50 \times\). \\
\((\) Cost Of Chromium needed \(=) 1.90 \times 100\) \\
\((\) Cost of Nickel needed \(=) 12.70 \times 50\) \\
\((\) Total cost \(=)(0) 50 \times 350+.1.90 \times 100+12.70 \times 50\) \\
(Total Cost \(=\)) \(£ 1000\) \\
QWC: \\
Look for \\
- correct units used i.e. \(\mathrm{kg}, \mathfrak{£}, \mathrm{p}\) \\
- spelling in at least 1 statement/sentence \\
- clarity of text explanations \\
QWC2: Candidates will be expected to \\
- present work clearly, with words or quantities shown for clarity of process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer \\
QWC1: Candidates will be expected to \\
- present work clearly, with words or quantities shown for clarity of process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A2 } \\
\\
\text { M1 } \\
\text { A1 } \\
\\
\hline \\
\hline \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
A1 for any 2 correct \\
FT their weights provided first M1 awarded \\
CAO \\
Alternative method: \\
Price of 10 kg : \\
M4 for \(7 \times 50 p \times 50+2 \times £ 1.90 \times 50+1 \times £ 12.70 \times 50\) \\
OR M3 for any 2 correct with intention to add \\
OR M2 for any 1 correct with intention to add \\
OR M1 for \(7 \times 50 p+2 \times £ 1.90+1 \times £ 12.70(=£ 20)\) \\
Al for \(£ 1000\) CAO \\
QWC2 Presents material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1 Presents material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar \\
OR \\
evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. \\
QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
\end{tabular} \\
\hline \begin{tabular}{l}
7. One correct evaluation \(4 \leq x \leq 5\) \\
2 correct evaluations \(4.2 \leq x \leq 4.35\) \\
one either side of 90 \\
2 correct evaluations \(4.25 \leq x \leq 4.35\) one either side of 90 \\
If evaluations not seen, accept 'too high' or 'too low'.
\[
x=4.3
\]
\end{tabular} \& B1
B1

M1

A1

4 \& | \underline{x} | $\frac{x^{3}+3 x}{76}$ | \underline{x} | $\frac{x^{3}+3 x}{8.24} \ldots$ |
| :--- | :---: | :---: | :---: |
| 4 | 140 | 4.22 | $87.81 \ldots$ |
| 5 | 81.221 | 4.23 | $88.37 \ldots$ |
| 4.1 | 86.688 | 4.24 | $88.94 \ldots$ |
| 4.2 | 92.407 | 4.25 | $89.51 \ldots$ |
| 4.3 | 98.384 | 4.26 | $90.08 \ldots$ |
| 4.4 | 104.625 | 4.27 | $90.66 \ldots$ |
| 4.5 | 111.136 | 4.28 | $91.24 \ldots$ |
| 4.6 | 4.29 | $91.82 \ldots$ | |
| 4.7 | 117.923 | | |
| 4.8 | 124.992 | 4.35 | $95.36 \ldots$ |
| 4.9 | 132.349 | | |
| Watch for comparison to 0. | | | |

\hline | 8. a) Points plotted at mid-points of groups and straight lines connecting the points |
| :--- |
| b) Sight of the mid-points $125,135,145,155,165$ $\begin{aligned} & 125 \times 2+135 \times 8+145 \times 13+155 \times 22+165 \times 10 \\ & (250+1080+1885+3410+1650=8275) \end{aligned}$ $\begin{gathered} ‘ \text { Their } 8275 ’ \div 55 \\ \quad=150(.45) \end{gathered}$ | \& | B2 |
| :--- |
| B1 |
| M1 |
| m1 |
| A1 |
| 6 | \& | B1 at least 4 points plotted and joined correctly |
| :--- |
| OR for all points plotted correctly but not joined, OR consistent horizontal translation within 1 small square. Accept intention of straight lines. Ignore any lines outside the first and last points. |
| FT their mid-points from within or at the bounds of the groups |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Unitised Unit 3-Nov 2013
Higher Tier \(\quad\) Mark scheme - Post Conference \& \& \\
\hline \begin{tabular}{l}
9. a) \(1.5 \times 10^{9}\) \\
b) \(9.6 \times 10^{-2}(\mathrm{~mm})\)
\end{tabular} \& \[
\begin{gathered}
\hline \text { B2 } \\
\text { B2 } \\
4
\end{gathered}
\] \& B1 for \(1.4 \times 10^{9}\) or \(1.49 \times 10^{9}\) or \(15 \times 10^{8}\) or \(1.488 \times 10^{9}\) B1 for \(0.096(\mathrm{~mm})\) or \(9.6 \times 10^{-3}(\mathrm{~cm})\) \\
\hline \[
\begin{aligned}
\& \text { 10. a) } 12 \times \cos 37^{\circ} \\
\& \begin{array}{rl}
\text { b) }\left(\text { length }^{2}=\right) 9^{2}+6.5^{2} \& 9.6(\mathrm{~cm}) \text { or } 9.5(83 . . \mathrm{cm}) \\
\text { length } \left.^{2}=123.25 \text { OR } \quad \text { (length }=\right) \sqrt{ } 123.25 \\
\& (\text { length }=) 11(.101 \ldots) \\
\& (\text { Perimeter }=) 44(.407 \ldots \mathrm{~cm})
\end{array}
\end{aligned}
\] \& \[
\begin{gathered}
\text { M2 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1 } \\
7
\end{gathered}
\] \& \begin{tabular}{l}
M1 for \(\cos 37=\mathrm{AC} / 12\) \\
Accept an answer of 10 from correct working \\
FT 'their length' \(\times 4\)
\end{tabular} \\
\hline \begin{tabular}{l}
11. a) \(4,6,7,11,23,30\) \\
b) Idea, plotting the upper class boundary consistently with the corresponding cumulative frequency. \\
At least 3 points plotted correctly. \\
All points correct and joined by straight lines or a curve. \\
c) Median = Answers in the range 63 to 64 inclusive \\
Interquartile range: (69 to 70) - (51 to 53) \\
Answers in the range 16 to 19 inclusive \\
d) valid comment \\
e.g. more young people would use the bus at 4 p.m.. fewer old people
\end{tabular} \& B1
M1

A1
A1
B1
M1

A1
E1

8 \& | FT, for all marks, provided frequencies are cumulative. |
| :--- |
| SC1 if points plotted at mid-points. |
| FT their diagram provided frequencies are cumulative. |
| Intention to subtract must be clear |
| Must FT from their calculation if shown. Allow a consistent misread of the horizontal scale. |
| CAO |

\hline 12. $6(x-1)+4(4 x-6)=3 \times 1$ or equivalent

$$
\begin{aligned}
& 22 x-30=3 \quad \text { or equivalent } \\
& x=1.5
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M2 } \\
\text { A1 } \\
\text { A1 } \\
4
\end{gathered}
$$

\] \& | For correctly clearing all 3 fractions |
| :--- |
| M1 for clearing 2 fractions |
| FT from M1 |
| Mark their final answer. |
| If no marks awarded SC1 for sight of $(11 x-15) / 6$ or $(22 x-30) / 12$ |

\hline | 13. a) Frequency densities of $1.8,2.6,6,2.2,2$ |
| :--- |
| Histogram of their frequency densities drawn |
| b) An attempt to add the areas of the bars $(5+4+5+14+8+6) \quad=42$ |
| Search for the median within the $30-35$ group $=32.5$ | \& \[

$$
\begin{gathered}
\hline \text { M2 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
7
\end{gathered}
$$

\] \& | M1 for any 3 or 4 correct. |
| :--- |
| Provided M1 awarded. |
| CAO |
| FT their 42 provided a clear attempt made to add the areas of the bars |

\hline $$
\begin{aligned}
& \text { 14. }(3 x-1)(x-12) \\
& \qquad x=1 / 3(\text { or } 0.33) \text { or } x=12
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\mathrm{M} 2 \\
\mathrm{~A} 1 \\
3
\end{gathered}
$$

\] \& | M1 for (3x...1)(x...12) |
| :--- |
| FT provided at least M1 awarded. |
| Do not accept solutions from use of the quadratic formula only. |

\hline 15. Use of $1 / 2$ absinC followed by cosine rule \& S1 \& Alternative strategy - Calculate the height, then base, then cosine rule

\hline $$
\begin{aligned}
& 18.25=1 / 2 \times 9.5 \times \mathrm{GH} \times \sin 125^{\circ} \\
& \mathrm{GH}=(2 \times 18.25) /\left(9.5 \times \sin 125^{\circ}\right) \\
& \quad \mathrm{GH}=4.69(\ldots) \text { or } 4.7
\end{aligned}
$$ \& M1

m1
A1 \&

\hline $$
\begin{aligned}
& \mathrm{FH}^{2}=9.5^{2}+\mathrm{GH}^{2}-2 \times 9.5 \times \mathrm{GH} \times \cos 125 \\
& \\
& \mathrm{FH}^{2}=163.35 \text { to } 164 \quad \mathrm{FH}=12.7(8) \text { or } 12.8(\mathrm{~cm})
\end{aligned}
$$ \& M1

A1
A1
7 \& FT provided M1 awarded

\hline
\end{tabular}

Unitised Unit 3 - Nov 2013 Higher Tier Mark scheme - Post Conference		
16. a) Tangent drawn	S1	
Idea of increase in $y /$ increase in x	M1	
Gradient from a reasonable tangent	A1	About $0.4\left(\mathrm{~ms}^{-2}\right)$
b) Split into 3 areas and attempt to sum	M1	
$($ Area $=$) $1 / 2 \times 10(0+2 \times 17+2 \times 23+25)$	M1	Or equivalent. Award for up to 1 error in reading scale.
$=525$	A1	CAO
c) $($ Total distance travelled $=)$ $\begin{array}{r} 525+(10 \times 25)+(1 / 2 \times 20 \times 25) \\ (=1025) \end{array}$	M1	FT 'their 525'
(Average speed $=$) 'their 1025'/60	M1	
$=17 .(08 \ldots)(\mathrm{m} / \mathrm{s})$	A1 9	CAO for 'their 525 '

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

