Surname

Other Names

Centre Number

Candidate Number 0

WJE

GCSE

4353/02

MATHEMATICS (UNITISED SCHEME) UNIT 3: Calculator-Allowed Mathematics HIGHER TIER

A.M. MONDAY, 11 November 2013

1 hour 45 minutes

	For Ex	For Examiner's use only	
	Question	Maximum Mark	Mark Awarded
ADDITIONAL MATERIALS	1.	4	
A calculator will be required for this paper.	2.	4	
A ruler, a protractor and a pair of compasses may be required.	3.	5	
		5	
INSTRUCTIONS TO CANDIDATES	5.	6	
Use black ink or black ball-point pen.	6.	7	
Write your name, centre number and candidate number in the spaces at the top of this page.	7.	4	
Answer all the questions in the spaces provided.	8.	6	
Take π as 3·14 or use the π button on your calculator.	9.	4	
	10.	7	
INFORMATION FOR CANDIDATES	11.	8	
You should give details of your method of solution when appropriate.	12.	4	
Unless stated, diagrams are not drawn to scale.	13.	7	
Scale drawing solutions will not be acceptable where you	14.	3	
are asked to calculate. The number of marks is given in brackets at the end of each	15.	7	
question or part-question.	16.	9	
You are reminded that assessment will take into account the quality of written communication (including mathematical	Total	90	
communication) used in your answer to question 6.			

Formula List

Area of trapezium =
$$\frac{1}{2}(a+b)h$$

Volume of prism = area of cross-section × length

Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$

Volume of cone
$$=\frac{1}{3}\pi r^2 h$$

Curved surface area of cone $=\pi r l$

$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

In any triangle *ABC*

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ Area of triangle $= \frac{1}{2}ab \sin C$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$

where $a \neq 0$ are given by

1.		Factorise $x^2 - 6x$.	[1]	
	(b)	Solve $7x + 13 = 3x + 5$.	[3]	
	••••••			
	•••••			
	•••••			

Examiner only

2. A sportswear manufacturer has designed a logo to go on all its clothing. The design of the logo is shown below.

Diagram not drawn to scale

Using a ruler and a pair of compasses, construct an accurate diagram of the logo. You must show all your construction lines. One line has already been drawn for you.

[4]

8 cm

Examiner only Two swimmers, Michael and Jordan, have a race over two lengths of a swimming pool. The 3. travel graph for the race is shown below. Distance from the start, in metres 50 Michael - Jordan 40 30 20 10 4353 020005 Time, in seconds 0 20 40 60 80 120 100 Who was in the lead during the first length of the race? (a) Use the graph to explain your answer. [1] What was Michael's average speed for the first length of the race? (b) Give the units of your answer. [3] (C) For what length of time were Michael and Jordan swimming in opposite directions? [1]

5

© WJEC CBAC Ltd.

Examiner only Anil wants to paint the outside of his house. The diagram shows one of the sides of Anil's house. The width of this side is 7 m and the vertical height is 9.5 m. 4. 9.5 m 6.5 m 6.5 m 7 m Diagram not drawn to scale Calculate the area of this side of Anil's house. [3] (a) A tin of paint covers an area of 15 m^2 . How many tins of paint does Anil need to buy in order to paint this side of his house? [2] (b)

Turn over.

6. You will be assessed on the quality of your written communication in this question.

A steel manufacturer makes high quality stainless steel by mixing composite steel, chromium and nickel in the ratio 7 : 2 : 1.

The costs of the materials are shown in the table below.

Material	Cost per kg
Composite steel	50p
Chromium	£1.90
Nickel	£12.70

Calculate the total cost of the materials needed to make 500 kg of high quality stainless steel. You must show all your working. [7]

 © WJEC CBAC Ltd.	(4353-02)	

7. A solution to the equation $x^3 + 3x = 90$ lies between 4 and 5. Use the method of trial and improvement to find this solution correct to 1 decimal place.

Examiner only

[4]

8. The heights, in centimetres, of 55 children are shown in the grouped frequency table below.

Examiner only

Examiner Calculate an estimate of the mean height of the children. (b) [4]

11

only

9.	(a)	Find the value of $(2.4 \times 10^3) \times (6.2 \times 10^5)$. Give your answer in standard form, to 2 significant figures. [2	Examiner only		
	(b)	A stack of 500 sheets of paper has a thickness of 4.8 cm. Calculate the thickness of 1 sheet of paper in millimetres . Give your answer in standard form. [2			
10.	(a)	Calculate the length of AC in the triangle below. [3]			
Diagram not drawn to scale					

Examiner only

Examiner only Use your cumulative frequency diagram to estimate the median and interquartile range of (C) the ages. [3] Median = Interquartile range = The median age for the 4 p.m. bus on the Tuesday was lower than the median age for the (d) 10 a.m. bus. Give a possible reason for this. [1] **12.** Solve the following equation. [4] $\frac{x-1}{2} + \frac{4x-6}{3} = \frac{1}{4}$

15

(4353-02)

Wingspan, x cm	Frequency	Frequency density
10 < <i>x</i> ≤ 20	18	
$20 < x \leqslant 30$	26	
30 < <i>x</i> ≤ 35	30	
$35 < x \leq 45$	22	
45 <i>< x</i> ≤ 60	30	

13. (a) The table shows the wingspan, in cm, of the birds in a local bird sanctuary.

Complete the frequency density column in the table and draw a histogram for the wingspan of the birds on the graph paper below. [3]

14. Factorise the expression $3x^2 - 37x + 12$ and hence solve the equation $3x^2 - 37x + 12 = 0$. [3]

.....

15.	In the parallelogram FGHJ, FG = 9.5 cm and $F\hat{G}H$ = 125°.	Examiner only
	G H $g \cdot 5 \text{ cm}$ $g \cdot 5 \text{ cm}$ F J	
	Diagram not drawn to scale	
	The area of the parallelogram is 36.5 cm ² . Calculate the length of the diagonal <i>FH</i> . [7]	

19

(4353-02)

Examiner Calculate an estimate of the area bounded by the curve, the time axis and the line t = 30. Use the trapezium rule with ordinates t = 0, t = 10, t = 20 and t = 30. [3] (b) Calculate an estimate of the average speed of the car for the entire 60 second journey. (C) [3]

END OF PAPER

only

BLANK PAGE

BLANK PAGE