GCSE MARKING SCHEME

METHODS OF MATHEMATICS (LINKED PAIR PILOT)

SUMMER 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCSE METHODS OF MATHEMATICS (LINKED PAIR PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

UNIT 1 (FOUNDATION TIER)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Methods Unit 1 Foundation June 2013} \& \& Final \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1. (a) 8039 \\
(b) forty eight thousand seven hundred and two \\
(c) 4 \\
16 \\
7 \\
(d) 3000 or 3 thousand \\
(e) 51700 \\
(f) Sensible estimates, that would lead to single digit multiplication \\
Correct answer from their estimates
\end{tabular}} \& B1
B1
B3

B1
B1
M1

A1 \& | Award B1 for each correct answer. |
| :--- |
| Accept thousand(s) but not 1000 . |
| Eg 50×4 or 50×3.9 or 51×4 |
| Award M1 A1 for unsupported answers of 200, 195 or 204 |
| Award M1 A1 for unsupported answer of 195-204 |
| Award M0 A0 for $(51 \times 3.9=) 198.9$ |

\hline \multicolumn{3}{|l|}{| 2. (a) 524 |
| :--- |
| (b) 279 |
| (c) 36 |
| (d) 516 $\begin{array}{r} \times 82 \\ \hline 1032 \\ \hline 41280 \\ \hline 42312 \end{array}$ |
| (e) 9 |
| (f) Explanation given AND Sian given as incorrect (stated or implied) |} \& B1

B1
B1
M1

A1
A1

B1

E1 \& | Any correct method for the multiplication of 516 by 82 |
| :--- |
| For either 1032 or 41280 (Apply 'one error' in other methods) CAO |
| Place value errors get M0 A0 |
| Watch out for an incorrect answer of -9 |
| Eg Sian incorrect because 6 coaches would be just over 300 people, so 10 coaches would be far too many. |
| Or 530 is a lot more. |
| Do not award E1 for statement incorrect only. |

\hline \multicolumn{3}{|l|}{3.} \& B3 \& | Award B3 for all correct |
| :--- |
| Award B2 for 3 or 4 correct entries |
| Award B1 for 1 correct row or column or the other diagonal or 2 correct only if working to a total of 15 . |

\hline \multicolumn{3}{|l|}{| 4. (a) A at $1 / 2$ |
| :--- |
| B at 1 |
| C at 0 |
| D at or near $1 / 3$ |
| (b) $5 / 7$ |
| 3/7 |
| (c) Explanation given and neither more likely or both equally likely (stated or implied) |} \& B1

B1
B1
B1
B2

E1

7 \& | For position of 'D' accept $>1 / 4$ but $<1 / 2$ |
| :--- |
| Award B1 for each correct answer. |
| Penalise -1 once only if consistent use of incorrect notation. |
| Eg.Both have the same chance as they each have 5 tickets with different numbers. Each number has the same probability. |

\hline \multicolumn{3}{|l|}{| 5.(a) 81 |
| :--- |
| Multiplying previous term by three |
| (b) $4 x-3$ |
| (c) Workings for Jenny $(0+2) \times 2=4$ AND Steve $0 \times 2+2=$ 2 AND Steve correct stated or implied by correct working |
| (d) $27=12+n$ $n=15$ |
| (e) $5 x$ |
| (f) $12 x-21$ |} \& B1

B1
B2

B2

B1
B1
B1
B1

10 \& | Accept "times by 3 " or " $\times 3$ " |
| :--- |
| Award B1 for either $4 x$ or -3 within an expression. Award B1 for $4 x+-3$ |
| Award B1 for workings for Jenny $(0+2) \times 2=4$ OR Steve 0×2 $+2=2$ |
| Accept embedded answers |
| Mark final answer |

\hline \multicolumn{3}{|l|}{| 6. (a) For 2 correct in a form which allows comparison. For all 3 correct in a form, or steps, that will allow comparison of all 3 |
| :--- |
| $35 / 100,0.37,{ }^{2} / 5$ or equivalent |
| (b) 200 |} \& B1

B1

B1
B2
5 \& CAO. Correct answer only award B0 B0 B1 B1 for either 8 or 25 .

\hline
\end{tabular}

12. Venn diagram correct	B4	No extra number >12 Mark unique placements of numbers, for duplicates mark the incorrect number then award as follows: B3 for any 9, 10 or 11 numbers correctly placed with no more than 1 extra number >12 B2 for any 6,7 or 8 numbers correctly placed with no more than 2 extra numbers >12 B1 for any 3, 4 or 5 numbers correctly placed and ignore any extra numbers If no marks awarded SC 1 for sight of sets A, B and C correct (including any extra numbers), shown in working or within Venn diagram
13.(a) Strategy to find at least one $4^{\text {th }}$ vertex, e.g. axes with 3 plots of given points and show understanding of parallel side requirement, OR a correct arithmetic method Any 2 of: $(5,6)(9,-2)(1,-2)$	M2	M1 axes and plot the 3 points given, OR a reasonable attempt at an arithmetic method, OR axes and plot the 2 of the 3 points given with an attempt draw 2 appropriate parallel lines A1 for one correct, or for 2 indicated but coordinates not given or given incorrectly If one correct, this implies M2 (and A1) If no marks, award SC 1 for evidence that the 3 coordinates have been reversed but a strategy to draw an appropriate parallel line is attempted. Do not penalise reverse coordinates if SC1 awarded. Candidates clearly and consistently working with reverse coordinates should be penalised -1 only
14. (i) At least 2 correct points found or plotted Correct straight line shown (ii) At least 2 correct points found or plotted Correct straight line shown	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \end{gathered}$	
15. (a) $10 \mathrm{n}-7$ (b) $-10 n+60$ or equivalent	B2 B2 4	B1 for sight of 10 n For B2 mark final answer. B1 for sight of $-10 n$

UNIT 1 (HIGHER TIER)

17.(a) Sight of 6, 12, 18 (as winning tickets) or realising there are 3 winning tickets	B1	
Idea to calculate $\mathrm{P}($ win $) \times \mathrm{P}($ win $)$	S1	Accept from incorrect replacement idea
$3 / 20 \times 2 / 19$	M1	FT their 3 if clear that an attempt to find multiples of 6
$6 / 380(=3 / 190)$	A1	ISW
(b) Sight of $1,2,3,6,9,18$ or realising that there are 6 winning tickets	B1	
Considers $\mathrm{P}($ win $) \times \mathrm{P}($ win $), \mathrm{P}($ win $) \times \mathrm{P}($ lose $), \mathrm{P}($ lose $) \times \mathrm{P}($ win $)$	S1	OR $1-\mathrm{P}$ (not winning). Accept from incorrect replacement idea
$\begin{aligned} & 6 / 20 \times 5 / 19+6 / 20 \times 14 / 19+14 / 20 \times 6 / 19 \\ & (30 / 380+84 / 380+84 / 380) \end{aligned}$	M1	FT their factors, provided clearly shown at least 4 of them OR $1-14 / 20 \times 13 / 19(=1-182 / 380)$
198/380 (=99/190)	A1	ISW
	8	
18.(a) $(\mathrm{x}+9)(\mathrm{x}-9)$	B1	
$(2 x-5)(x+9)$	B2	B1 for ($2 \mathrm{x} \ldots .5$)(x .. 9)
$\underline{x-9}$	B1	FT if possible for similar level of difficulty
$2 x-5$		Mark final answer, do not ISW
(b)(i) $\mathrm{a}=6$	B1	
$\mathrm{x}^{2}+12 \mathrm{x}+36(-22)$ OR method to find b	M1	
b $=-22$	A1	Accept embedded answers
(ii) $(x+6)^{2}-22=0$	B1	Use of completing the square from (i), FT
$(x+6)^{2}=22$	M1	
$x+6=(\pm) \sqrt{ } 22$	M1	
$x= \pm \sqrt{22-6}$	A1	Must show \pm
	11	

UNIT 2 (FOUNDATION TIER)

$\begin{aligned} & 5.5 \\ & -3 \\ & 6--6=12 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \\ & \\ & \hline \\ & \hline \end{aligned}$	Award B1 for 6 OR -6 in the correct place, provided $1^{\text {st }}$ is positive AND $2^{\text {nd }}$ negative, with their correct answer given e.g. 6--1 $=7$ or 5- $-6=11$
$\begin{aligned} & \text { 6. (a) } x=7 \\ & \text { (b) } x=9 \\ & \text { (c) } 5 x=35 \\ & x=7 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \\ & 4 \\ & \hline \end{aligned}$	Accept embedded answers throughout question FT "their 35 " $\div 5$. If this leads to a whole number it must be correctly evaluated. Mark final answer.
7. For a trial that gives an area of $30 \mathrm{~cm}^{2}$ For a trial that gives an area of $30 \mathrm{~cm}^{2}$ and the value of the perimeter stated. (Length) 6(cm) and (width) 5(cm) $($ Perimeter $=) 22(\mathrm{~cm})$	B1 B1 B1 B1 4	Accept non-whole number trial eg 4×7.5 Maybe seen on a diagram Accept non-whole numbers with the correct perimeter Accept (width) 6(cm) and (length) 5(cm) 1 by 3062 cm 2 by 1534 cm 3 by $10 \quad 26 \mathrm{~cm}$ 5 by 622 cm
8. (a) For all 4 correct as fractions that allows comparison $7 / 12,2 / 3,3 / 4,5 / 6$ or equivalent fractions (e.g. $7 / 12,8 / 12,9 / 12,10 / 12$) (b) $390 \div 3$ $\begin{aligned} & \ldots . \quad \times 5 \\ & 650 \end{aligned}$	$\begin{gathered} \text { M2 } \\ \text { A1 } \\ \\ \text { M1 } \\ \\ \text { m1 } \\ \text { A1 } \\ 6 \end{gathered}$	Award M1 for any two correct in a fraction that allows comparison If no marks awarded, award SC1 for correct order without using equivalent fractions Accept in either order $\times 5 \div 3$. Award M1 for sight of 130 or 1950 CAO
9. (a) 7 AND 5 multiplied by 0.8 5.6 AND 4 (m) $\begin{array}{r} 5.6 \times 4 \\ =22.4 \end{array}$ (b) $35 \times 45 \times 20$ $\begin{aligned} & 31500 \\ & 31500 \div(100 \times 15) \\ & 21(\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { U1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 9 \end{gathered}$	Accept equivalent in cm Seen or implied FT their 5.6 AND 4 but not 7×5 Independent mark Seen or implied in further calculations FT their 31500
10. (a) $(28416 / 38400) \times 100$ $74(\%)$ (b) $766+766 \times 12 / 100 \quad$ OR $\quad 766 \times 1.12$ (£) 857.92 (c) $2 / 5$ or equivalent fraction	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 5 \end{gathered}$	Or equivalent full method Or equivalent full method CAO
11. (a) Enlargement scale factor 2 Correct position (b) Correct reflection in $y=x$ (c) Correct translation (d) Correct rotation	B2 B1 B2 B1 B2 8	B1 for any 3 lines correct, or consistent incorrect scale At least 2 points are needed to indicate the correct position B1 for a reflection in $y=-x$, OR for sight of the line $y=x$ B1 near miss, OR 90° clockwise rotation about $(2,1)$, OR 90° anticlockwise rotation about $(1,2)$

$\begin{aligned} & \text { 12. (a) } 9 \mathrm{x}-4=7 \mathrm{x}+14 \\ & \text { 9x-7x=14+4 or } 2 \mathrm{x}=18 \\ & \quad \mathrm{x}=9 \\ & \text { (b) } \quad 10 \mathrm{x}>40 \\ & \quad \mathrm{x}>4 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	$F T$ until $2^{\text {nd }}$ error No marks for use of "=", unless finally replaced to give $\mathrm{x}>4$ then award M1 A1. SC1 for $\mathrm{x}>5$ from 10x>50 OR sight of $9 \times 6=54$ AND $9 \times 7=63$
13. (a) 4.5×12.4 $55.8\left(\mathrm{~cm}^{2}\right)$ $\begin{aligned} & \text { (b) } x+x+2+2 x+3 x+5+4 x(=\ldots) \\ & \quad 11 x+7=95 \text { or } 11 x=88 \quad x=8 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ 5 \end{gathered}$	Accept $56\left(\mathrm{~cm}^{2}\right)$ from correct working For the expression with intention to sum the terms given CAO. Unsupported $x=8$ is awarded no marks

UNIT 2 (HIGHER TIER)

4(a) $x=60 \times 5 / 8$	B1	FT until ${ }^{\text {nd }}$ error
$\mathrm{x}=37.5$	B1	Accept 300/8 or equivalent. Mark final answer
(b) $x=1 / 4$ or 0.25 or equivalent	B1	Accept 3/12. Mark final answer
(c) $9 x-4=7 x+14$	B1	FT until $2^{\text {nd }}$ error
$9 x-7 x=14+4$ or $2 x=18$	B1	
$x=9$ (d) $10 x>40$	B1	
	M1	No marks for use of "=", unless finally replaced to give
$x>4$	A1	$\mathrm{x}>4$ then award M1 A1. SC1 for $x>5$ from 10x >50
(e) $x>60 / 9$ or $x>6.6(666)$	M1	OR sight of $9 \times 6=54$ AND $9 \times 7=63$
7	A1	Do not accept final answer of (x) >7.
	1 10	Do not penalise use of ' $=$ ' if 7 is given as a final response, award M1, A1
5(a) 4.5×12.4	M1	
	A1	Accept 56(cm^{2}) from correct working
(b) $34.6=\Pi \times \mathrm{r}^{2}$	M1	
$\mathrm{r}^{2}=34.6 / \Pi$	A1	
$\mathrm{r}=3.3(186 \ldots \mathrm{~cm})$	A1	Accept 3(cm) or $3.3(\mathrm{~cm}$) from correct rearrangement
$\begin{aligned} & \text { (c) } x+x+2+2 x+3 x+5+4 x(=\ldots) \\ & 11 x+7=95 \text { or } 11 x=88 \quad x=8\end{aligned}$	M1	For the expression with intention to sum the terms given
	m1	
	A1	CAO.
	8	Unsupported $x=8$ is awarded no marks
$\begin{aligned} & \text { 6(a) } 4.4 \\ & \begin{array}{lll} \text { (b) } & 637 & (\times \ldots) \\ & (\ldots \times) & 3192 \end{array} \\ & \\ & \end{aligned}$	B2	B1 for 4.38(13...) or 4.3
	B1	
	B1	
	B1	FT correct evaluation of product from 1 correct value If no marks then SC1 for interpretation of 'product' and
	5	'of' e.g. by sight of $21 / 3 \times 273 \times 41 / 5 \times 760$
$\begin{aligned} & \text { 7. Strategy: use of Pythagoras' Theorem } \\ & h^{2}=4.2^{2}+4.2^{2} \\ & \text { and } \mathrm{C}=\Pi \mathrm{d} \text { or } \mathrm{C}=2 \Pi r \end{aligned}$	S1	OR alternative full correct strategy
	M1	OR alternative complete method
$\mathrm{h}=\sqrt{ } 35.28$	A1	
$\text { diameter }=5.9(39 \ldots \mathrm{~cm}) \text { or radius }=2.9698 \ldots(\mathrm{~cm})$	A1	Accept diameter $=6(\mathrm{~cm})$ or radius $=3(\mathrm{~cm})$, do not accept radius $=2.9$. Clarification of diameter or radius may be implied in further work, penalise here with A0, then FT
$\mathrm{C}=\Pi \times 5.939 \ldots \quad \text { OR } \mathrm{C}=2 \times \Pi \times 2.9698 . .$	m1	FT their radius or diameter as appropriate provided M1 awarded, including use of $\mathrm{r}=5.9(39 \ldots)$
$18.5(\mathrm{~cm})$ to $18.7(\mathrm{~cm})$	$\begin{gathered} \mathrm{A} 1 \\ 6 \end{gathered}$	($\mathrm{r}=5.9(39 \ldots$) leads to $37(.4 . . \mathrm{cm})$
8(a) Method to clear fractions, all 3 terms$3(3 x-1)-4(x+6)=3 \times 6$	M2	Intention, i.e. brackets may be missing
		M1 for clearing fractions 2 terms
		Fractions must be cleared before M marks can be awarded, not for quotients
$\begin{aligned} 9 x-3-4 x-24 & =18 \text { OR } 5 x-27=18 \text { OR } 5 x=45 \\ x & =9 \end{aligned}$	A1	FT from M1 or M2
	A1	FT provided M1 awarded
		If no marks SC1 sight of $(5 x-27) / 12$
(b) $\operatorname{Sin} x=28.7 / 34.2$	M1	
$57\left(.0537 . . .{ }^{\circ}\right) \text { or } 57\left(.1^{\circ}\right)$	A2	A1 for $\mathrm{x}=\sin ^{-1} 0.839(181 \ldots)$
(c) 1.5×10^{11}	B2	B1 for 1.54(347...) $\times 10^{11}$
	9	
9. $\begin{aligned}(\mathrm{x}=) 8.4 \times 6 / 5 & \\ & =10(.08 \mathrm{~cm}) \text { or } 10.1(\mathrm{~cm}) \\ (\mathrm{y}=) 4.32 / 6 / 5 & \text { or } \quad(\mathrm{y}=) 4.32 \times 5 / 6 \\ & =3.6(\mathrm{~cm})\end{aligned}$	M1	Or equivalent calculation that could lead to correct
	A1	answer
	M1	Or equivalent calculation that could lead to correct
	A1	answer

\begin{tabular}{|c|c|c|}
\hline 10.(a) Any two points correct, with no incorrect points \& M2 \& \begin{tabular}{l}
Accept \((0,10)\) as one of the points with 1 other point, provided no other incorrect points plotted \\
M1 any one point correct provided no incorrect points plotted, do not accept \((0,10)\), OR \\
M1 for any 2 correct points not including \((0,10)\)
\end{tabular} \\
\hline \begin{tabular}{l}
Correct straight line drawn from (but not beyond) \((30,40)\) inclusive to \((0,10)\) exclusive \\
(b) Explanation of implied NO, e.g. 'not possible to have a rectangle with zero lengths'
\end{tabular} \& A1
E1
4 \& Accept indication for lots and lots of points between. Accept to \((0,10)\) but not beyond \\
\hline \begin{tabular}{l}
11(a) Two different corresponding sides and an included angle indicated. \\
(b) Right angle, hypotenuse and a corresponding different side indicated OR Right angle, hypotenuse and a corresponding different angle indicated
\end{tabular} \& B2 \& \begin{tabular}{l}
B1 Two corresponding sides not marked as different and the included angle indicated \\
B1 Right angle, hypotenuse and a corresponding different length indicated but not marked as different B1 Right angle, hypotenuse and a corresponding angle indicated but angles not marked as different, or Right angle, hypotenuse \& the both of 2 corresponding sides marked differently as appropriate Accept right angles indicated either as \(90^{\circ}\) or \(\square\) at vertex
\end{tabular} \\
\hline 12. \& B4 \& \begin{tabular}{l}
B3 for 820 , or \\
B2 for \(492 \times 100 / 60\), or \\
B1 for ' \(60 \%\) is 492 ', or \\
B1 for \(0.98 \times\) 'their 820 ' correctly evaluated to nearest penny or unrounded
\end{tabular} \\
\hline \begin{tabular}{l}
13. \\
(a) \(-7 x+10 y\) \\
(b)(i) \(-6 \boldsymbol{x}-3 \boldsymbol{y}\) or factorised equivalent \\
(ii) \(-6 x+7 y\)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 } \\
\& \\
\& 3 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
Mark final answer in each part \\
FT (b)(i) \(+10 y\) simplified correctly \\
If (i) and (ii) both correct but left in unsimplified form allow SC1
\end{tabular} \\
\hline 14. Strategy: Use of \(1 / 2 \mathrm{abSinC}\) and cosine rule
\[
\begin{aligned}
\& 42.8=1 / 2 \times \mathrm{BC} \times 17.8 \times \sin 34 \\
\& \mathrm{BC}=8.59987 \ldots \\
\& \mathrm{AB}^{2}=\mathrm{BC}^{2}+17.8^{2}-2 \times \mathrm{BC} \times 17.8 \times \cos 34 \\
\& \mathrm{AB}^{2}=136.98 \ldots \\
\& \mathrm{AB}=11.7(\ldots \mathrm{~cm})
\end{aligned}
\] \& S1
M1
A1
M1
A1
A1 \& \begin{tabular}{l}
Or equivalent full strategy \\
FT their BC, but not as 17.8 \\
Accept \(12(\mathrm{~cm})\) from correct working. CAO \\
Alternative: \\
S1 complete strategy, e.g. with perpendicular with appropriate trigonometry for both triangles M1, A1 for the RHS triangle \\
M1, A1, Al for the LHS triangle
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 15.Volume sphere }=4 \times \Pi \times 6.7^{3} / 3 \quad\left(=1259\left(.833 \mathrm{~cm}^{3}\right)\right) \\
\& \text { Volume cone }=\Pi \times \mathrm{r}^{2} \times 10.4 / 3 \\
\& \qquad \begin{aligned}
\mathrm{r}^{2} \& =\frac{\text { Volume sphere } \times 3}{\Pi \times 10.4} \\
\mathrm{r}^{2} \& =115.678 \ldots \\
\mathrm{r} \& =10.8(\mathrm{~cm})
\end{aligned}
\end{aligned}
\] \& B1
B1
M1

A1
A1

5 \& | FT their volume sphere provided dimensions cm^{3} for M1 only |
| :--- |
| Or equivalent rearrangement to isolate r^{2} |
| CAO. Must be to 1d.p. |
| Alternatively: $\begin{aligned} 4 / 3 \times \pi \times \mathrm{R}^{3} & =1 / 3 \times \pi \times \mathrm{r}^{2} \times \mathrm{h} & & \text { B1 } \\ 4 \times \mathrm{R}^{3} & =\mathrm{r}^{2} \times \mathrm{h} & & \text { B1 } \\ 4 \times 6.7^{3} & =\mathrm{r}^{2} \times 10.4 & & \text { M1 } \\ \mathrm{r}^{2} & =115.678 . . & & \text { A1 } \\ \mathrm{r} & =10.8(\mathrm{~cm}) & & \text { A1 CAO } \end{aligned}$ |

\hline
\end{tabular}

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk

