Surname
Other Names

Centre Number	Candidate Number
0	

GCSE

WJEC CBAC

4370/05

MATHEMATICS - LINEAR
 PAPER 1
 HIGHER TIER

A.M. TUESDAY, 11 June 2013

2 hours
Suitable for Modified Language Candidates

CALCULATORS ARE NOT TO BE USED FOR THIS PAPER

ADDITIONAL MATERIALS

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.
Take π as $3 \cdot 14$.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into account the quality of written communication (including mathematical

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1	3	
2	7	
3	5	
4	3	
5	9	
6	5	
7	3	
8	7	
9	5	
10	6	
11	5	
12	9	
13	3	
14	8	
15	6	
16	4	
17	12	
TOTAL MARK		

Formula List

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

1.

Find the size of each of the angles a, b and c ．
\qquad
\qquad
\qquad
$a=$ \qquad。
$b=$。
$c=$ \qquad。
2. Every Friday for 6 weeks, the number of customers entering a sandwich shop and the takings of the shop were recorded.
The takings were recorded correct to the nearest $£ 10$.
The table below shows the results.

Number of customers	104	82	120	64	70	118
Takings, in $£$	510	420	590	320	340	560

(a) On the graph paper below, draw a scatter diagram of these results.
Takings, in $£$

(b) Write down the type of correlation that is shown by the scatter diagram.
(c) Draw, by eye, a line of best fit on your scatter diagram.
(d) Estimate the takings for a Friday when there are 90 customers.
(e) Approximately how much does a customer spend, on average, in the sandwich shop on a Friday?
3. Two types of banana are available to buy, Fairtrade and non-Fairtrade.

Each type of banana costs 30 p.
The table below shows how the 30 p is shared for each type of banana.

	Non-Fairtrade	falrtrade Fairtrade
Grower	2p	15p
Plantation owner	5p	2p
Wholesale importer	3p	2p
Shipper	4 p	3p
Ripener	4 p	2p
Seller	12p	6p
Total	30p	30p

(a) Calculate the percentage of the cost of a banana that goes to the seller under
(i) non-Fairtrade,
\qquad
\qquad
\qquad
(ii) Fairtrade.
(b) A newspaper report states that the Grower gets too small a proportion of the price of a non-Fairtrade banana. Explain, using fractions, how this has improved with the move to producing Fairtrade bananas.
4. In answering this question, you must show all your construction arcs. Construct an angle of 45° at the mid-point of the straight line below. Use a ruler and a pair of compasses for your construction. Label your angle 45°.
5. You will be assessed on the quality of your written communication in this question.

Pedro has just moved to live on an island in Europe.
There is a choice of two different water companies.

Manana Water

No Standing Charge
Pay $€ 0.06$ per m³ of water used

Channel Water

Standing Charge: €30 every 3 months $+$
$€ 0.02$ per 3 of water used
Special offer: 20% off your first bill

Pedro estimates that he uses $700 \mathrm{~m}^{3}$ of water every three months.
He wants to spend as little as possible on water.
Which company should Pedro buy his water from?
You must justify your answer by showing all possible costs.
6. (a) Draw an enlargement of the trapezium using a scale factor of 2 and centre O.

(b) Rotate the triangle A through 90° anticlockwise about the point $(-1,-2)$.

Diagram not drawn to scale

The above diagram shows three points X, Y and Z which lie on a straight line.
Calculate the bearing of
(a) Z from Y,
(b) X from Y.
8. (a) Find the highest common factor of 90 and 105.
(b) Find the lowest common multiple of 90 and 105.
\qquad
\qquad
\qquad
\qquad
(c) Express 936 as a product of prime numbers in index form.
\qquad
9. A company is making cylinders to package plastic rods.

Each cylinder is made using a rectangular piece of card and two circular pieces of metal.
9. A company is making cylinders to package plastic
Each cylinder is made using a rectangular piece of
The net of one of these cylinders is shown below.

Diagram not drawn to scale

The radius of each circular end is 10 cm .
The cylinder is of length 2 metres.
Taking $\pi=3 \cdot 14$, calculate the area of the rectangular piece of card.
State the units of your answer.
10. Rearrange the following formulae to make y the subject.
(a) $y^{2}-t=g$
(b) $\frac{3 y+w}{2 y+3}=5$
11. The diagrams show how 12 small identical rectangles can be placed to form a larger rectangle in two different ways.

Diagram 1

Diagram 2

Diagrams not drawn to scale

The perimeter of each of these diagrams is measured.
The perimeter of diagram 1 is 55 cm .
The perimeter of diagram 2 is 50 cm .
Find the dimensions of one of the 12 small identical rectangles.
\qquad
12. The frequency diagrams show the lengths of telephone calls taken by two online shopping companies one day in November.

(a) How many calls to Cat Boots UK lasted between 5 minutes and 15 minutes?
(b) Which company had longer calls on average on this day? Give a reason for your answer.
(c) Complete the cumulative frequency table for Cat Boots UK times.

Time t, in minutes	$t \leqslant 5$	$t \leqslant 10$	$t \leqslant 15$	$t \leqslant 20$
Cumulative frequency				

（d）Draw a cumulative frequency diagram for the Cat Boots UK information．Use the graph paper below for your diagram．

（e）Use your cumulative frequency diagram to find
（i）an estimate for the median time of calls to Cat Boots UK，
（ii）an estimate for the inter－quartile range of the times for calls to Cat Boots UK．
\qquad
13. A farmer has just enough food to feed x pigs for y days.
(a) Write down an expression for the number of days the farmer could feed z pigs with the same amount of food.
\qquad
\qquad
\qquad
(b) Write down an assumption you have made in answering part (a).
14. (a) Express $\frac{x}{x-3}-\frac{x}{x+6}$ as a single fraction in its simplest form.
(b) Simplify $\frac{49 x^{2}-100}{14 x+20}$.
(c) Simplify $\frac{(2 x-5)^{8}}{(2 x-5)^{6}}$.
15. (a) Express $0.43 \dot{5}$ as a fraction.
(b) Express $100^{-\frac{1}{2}}$ as a fraction.
(c) Given that $f=\sqrt{2}, g=\sqrt{5}$ and $h=\sqrt{10}$, find, in its simplest form,
(i) $\frac{f g}{h}$,
(ii) $f g+h$,
\qquad
\qquad
(iii) $f h$.
\qquad
\qquad
16. The points A and B lie on the circumference of a circle with centre O. The straight lines $P A Q$ and $R B Q$ are tangents to the circle.

You are given that $A \widehat{Q} B=2 x$, where x is measured in degrees.
Write down the size of $A \widehat{O} Q$ in terms of x.
Give reasons in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17. (a) In an experiment, it was found that the velocity, $v \mathrm{~m} / \mathrm{s}$, of a particle at time t seconds was given by the equation $v=5 t-t^{2}$.

Draw the graph of $v=5 t-t^{2}$ for values of t from 0 to 5 .

																					-				
																-									
																					-				
																					-				
									π			-				-					-		-		
																					-				
																-					-				
									\square				π								-				
																					-				
																		-							
												,													

(b) A velocity-time graph for a different experiment is shown below.

(i) Based on this experiment, complete the following sentence.
"The acceleration of this particle is zero when $t=$
(ii) Find an approximation for the acceleration of the particle in this experiment when $t=1$. Give the units of your answer.
(iii) Find an approximation for the distance travelled by the particle between $t=0$ and $t=4$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

