MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Additional Mathematics Summer 2012		Final Mark Scheme
1	(a)(i) 27 (ii) 10000 (b)(i) (20) $x^{8 / 4} / x^{3 / 2}$ or equivalent first stage of work evaluated correctly with simplification of indices $20 x^{1 / 2} \text { or } 20 \sqrt{x}$ (ii) Correctly extracting a factor of $x^{1 / 5}$ (numerator), OR correct alternate method with one correct step towards simplification $3+x^{1 / 5}$	B2 B1 B1 B1 M1 A1 7	B1 for either $1 / 8$ or 216 Answer only, no working shown, BO e.g. $(\sqrt{ } 100)^{4}=10^{4}=10000$, or $10^{4}=10000$, or $100^{2}=10000$. Do not accept $\sqrt{ } 100^{4}=10000$ Answer only, no working shown, BO CAO. Mark final answer Must be correct, but could be $6 x^{1 / 5}, 3 x^{1 / 5}$ or $x^{1 / 5}$. For an alternative method, need sight of $3+\mathrm{x}^{2 / 5} / \mathrm{x}^{1 / 5}$ for M1 CAO. Mark final answer
2	Common denominator $\mathrm{x}+2 \mathrm{y}$ $\begin{aligned} & \frac{x+2 y-(3 x-y)}{x+2 y} \text { OR } \frac{x+2 y-3 x+y}{x+2 y} \\ & \frac{-2 x+3 y}{x+2 y} \end{aligned}$	B1 B1 B1 3	Brackets must be shown or implied by correct further working Must be seen or implied as a quotient FT from B1, B0 for one error in sign leading to an answer of $(y-2 x) /(x+2 y)$ to give final B1 Do not ignore further working. Mark final answer
3	(a) $56 x^{6}+2(+0)$ (b) $-8 x^{-9}$ (c) $3 / 2 x^{1 / 2}$	$\begin{gathered} \text { B3 } \\ \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	B1 for each term. Accept 8×7 as 56 . Only award B1 for '(+0)' provided at least one other B mark awarded. ISW ISW Index needs to be simplified. ISW
4	(a) $(-3)^{3}-2(-3)^{2}-9(-3)+18$ $=0$ $(\mathrm{x}+3)$ is a factor OR divisible by $\mathrm{x}+3$ (b) $(\mathrm{x}+3)(\mathrm{ax}+\mathrm{bx}+\mathrm{c})$ or intention to $\div(\mathrm{x}+3)$ $\begin{aligned} & (x+3)\left(x^{2}-5 x+6\right) \\ & ((x+3))(x-3)(x-2) \end{aligned}$	M1 A1 E1 M1 A2 A1 7	Depends on M1, A1. Do not accept contradictions Division method needs to show x^{2} and attempt to find the next term May be division by $x-3$ or $x-2$, mark in the same way as described for division by $\mathrm{x}+3$ A 1 for -5 x or +6 . Or use of factor theorem A1 for each factor CAO. Mark final answer. Do not ignore continuing to solve. An answer of $(x-2)\left(x^{2}-9\right)$ is awarded M1, A2
5	$\begin{aligned} & \text { (dy/dx =) } 3 a^{2} x^{2} \\ & \text { Strategy to substitute } x=3 \text { into } d y / d x \\ & \text { Equating 'their } 3 a 3^{2} \text { ' to } 135 \\ & \quad a=5 \end{aligned}$	M1 m1 m1 A1 4	Depends on all previous marks N.B. No marks awarded for $a=5$ from an incorrect method, e.g. $135=a \times 3^{3}$, then $a=135 / 27=5$
6	(a) Multiplier $(2-\sqrt{5}) /(2-\sqrt{5})$ Denominator 4+2 5 - $2 \sqrt{ } 5-5$ OR 4-5 OR -1 $3 \sqrt{5}-6$ or $(6-3 \sqrt{ } 5) /-1$ (b) $\begin{gathered} \{3+2 \sqrt{ } 3+2 \sqrt{ } 3+4\}-\{3-2 \sqrt{ } 3-2 \sqrt{ } 3+4\} \\ \text { OR }\{(\sqrt{ } 3+2)+(\sqrt{ } 3-2)\}\{(\sqrt{3}+2)-(\sqrt{ } 3-2)\} \end{gathered}$	M1 A1 A1 B2 $\begin{gathered} \text { B1 } \\ 6 \end{gathered}$	CAO. Mark final answer B1 for 1 slip $' 3+2 \sqrt{3}+2 \sqrt{3}+4-3-2 \sqrt{3}-2 \sqrt{3}+4 \prime \text { is } 3 \text { slips, }$ unless brackets were intended as implied by further working CAO. Mark final answer
7	```(a) \(\mathrm{RS}^{2}=(31-7)^{2}+(15-5)^{2}\left(=24^{2}+10^{2}\right)\) \(\mathrm{RS}=\sqrt{676}(=26)\)``` (b) Gradient RS (31-7)/(15-5) $=12 / 5$ or equivalent Perpendicular gradient $-5 / 12$ or equivalent	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 5 \\ \hline \end{gathered}$	Or equivalent. Allow 1 slip or error CAO Do not ignore incorrect cancelling in (b) FT -1/'their gradient RS'. Do not accept fraction of a (decimal) fraction

	Additional Mathematics Summer 2012		Final Mark Scheme
8	(a) $24 x^{3}+4$ $72 \mathrm{x}^{2}$ (b) $(3 / 3) x^{3}+4 /\left(-2 x^{2}\right)+(8 / 2) x^{2}$ +c (constant) $\begin{aligned} & \text { (c) } 6 x^{2} / 2+x \\ & {\left[6 x^{2} / 2+x\right]^{4}} \\ & \quad=\left(3 \times 4^{2}+4\right)-\left(3 \times 2^{2}+2\right) \end{aligned}$ $=38$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B3 } \\ & \text { B1 } \\ & \text { B2 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & 11 \end{aligned}$	FT to $2^{\text {nd }} \mathrm{B} 1$ from dy/dx $=k x^{n}+\mathrm{a}$, equivalent level of difficulty B1 for each term. Accept unsimplified. ISW Award if at least B1 given for integration B1 for $6 x^{2} / 2$ or x FT their integration not use of $6 x+1$. Intention to use 4, 2 and subtract FT for correct use of limits CAO, not FT. Answer only, no working shown, M0 A0 AO
9	(a) $(5 \mathrm{x}+3)(3 \mathrm{x}-2)$ $-3 / 5 \text { or } 2 / 3$ (b) $(x+5)^{2}$ -10 Least value -10	B2 B1 B1 B1 7	B1 ($5 \mathrm{x} \ldots 3$)(3x $\ldots 2$). Ignore sight of " $=0$ " Strict FT from (a) if (5x..3)(3x..2) or (5x..2)(3x..3). B1 for each answer Sight of $(x+5)^{2}$ or $(x+10 / 2)^{2}$ or $(x+5)(x+5)$ Accept 15-25 if not evaluated, otherwise mark final value FT their value but not 25 or 15
10	$\begin{aligned} & y=13-2 x \\ & x^{2}+x(13-2 x)-30=0 \\ & x^{2}-13 x+30=0 \text { or }-x^{2}+13 x-30=0 \text { or equivalent in } y \\ & (x-10)(x-3) \quad\{=0\} \\ & x=10 \text { and } x=3 \\ & y=-7 \text { and } y=7 \end{aligned}$	B1 M1 A1 M1 A1 A1 6	OR equivalent using $x=\ldots$. FT their y , attempt to substitute Must equate to 0 (maybe implied by answer) FT equivalent level of difficulty OR correct use of formula with $b^{2}-4 a c$ evaluated correctly FT from M1, A0 Answer $x=3$ and $y=7$ OR $x=10$ and $y=-7$ from a trial and improvement method, award SC1. Also possible B1, M1, A1 with SC1 Alternative method: B1 $2 x^{2}+x y=13 x$ M1 Intention to subtract, using $x^{2}+x y-30=0$ then as original method

\begin{tabular}{|c|c|c|c|}
\hline \& Additional Mathematics Summer 2012 \& \& Final Mark Scheme

\hline 13 \& Strategy: Idea of 3D-ness and Pythagoras' Theorem
$$
\begin{aligned}
& \begin{aligned}
&(\text { Base diagonal })^{2}=4^{2}+4^{2} \\
& \text { Base diagonal }=\sqrt{ } 32(\text { Or } 1 / 2 \text { base diagonal }=1 / 2 \sqrt{ } 32 \\
&(\text { Perpendicular height })^{2}=6^{2}-(1 / 2 \text { base diagonal })^{2} \\
&=36-1 / 4 \times 32 \\
& \text { Perpendicular height }=\sqrt{ } 28
\end{aligned}
\end{aligned}
$$ \& S1
M1
A1
M1
A1
A1
B1

7 \& | E.g. suitable diagram \& attempt Pythagoras' Theorem once Or for $(1 / 2 \text { diagonal })^{2}$ equation |
| :--- |
| FT their $(1 / 2 \text { diagonal })^{2}$ |
| Depends on M1 only |
| FT provided at least M2 awarded |
| Alternative: |
| S1 Strategy: Idea of 3D-ness, Pythagoras' |
| Theorem once |
| M1 (sloping perpendicular bisector) ${ }^{2}=6^{2}-2^{2}$ |
| A1 sloping perpendicular bisector $=\sqrt{ } 32$ |
| M1 (Perpendicular height) ${ }^{2}$ |
| $=(\text { sloping perpendicular bisector })^{2}-2^{2}$ |
| (FT their perpendicular bisector) |
| AI (Perpendicular height $)^{2}=(\sqrt{ } 32)^{2}-2^{2}$ |
| A1 Perpendicular height $\sqrt{ } 28$ (Depends on M1 only) |
| B1 $2 \sqrt{ } 7$ (FT provided at least $M 2$ awarded) |

\hline 14 \& $$
\begin{aligned}
& \mathrm{C}=2 \pi \mathrm{x} \\
& \text { Surface area }=\text { length } \times \mathrm{C} \\
& 2 \pi \mathrm{x}(3 \mathrm{x}+2)=32 \pi \\
& 3 \mathrm{x}^{2}+2 \mathrm{x}-16=0 \text { or equivalent } \\
& (3 \mathrm{x}+8)(\mathrm{x}-2)=0 \\
& \\
& (\mathrm{x}=-8 / 3) \mathrm{x}=2 \\
& \text { Height is } 8(\mathrm{~cm})
\end{aligned}
$$ \& B1

B1
M1
A1

M1

A1
A1

7 \& | Do not accept embedded within an incorrect equation |
| :--- |
| FT their linear C. Allow intention |
| Must be correct. Accept numerical value for π Intention of brackets must be clear in working Needs to have eliminated π and equate to zero Equate to zero maybe implied by solving FT their quadratic provided B2 awarded OR correct substitution into the formula, or use of completing the square |
| Unsupported correct answers, award 7 marks, otherwise correct working needs to support answers, use of πx^{2} is incorrect |

\hline 15 \& | (a) $(y+\delta y=) \quad(x+\delta x)^{2}-5(x+\delta x)$ |
| :--- |
| Intention to subtract $(y=) x^{2}-5 x$ to find δy $(\delta y=) \quad 2 x \delta x+(\delta x)^{2}-5 \delta x$ |
| Dividing by δx and letting $\delta x \rightarrow 0$ $d y / d x=\lim _{\delta x \rightarrow 0} \delta y / \delta x=2 x-5$ |
| (b) $\begin{aligned} 2 x-5 & =15 \\ & x=10 \end{aligned}$ | \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { M1 } \\
\text { A1 } \\
7 \\
\hline
\end{gathered}
$$

\] \& | Or alternative notation. Allow if final bracket omitted |
| :--- |
| Accept δx^{2} as meaning $(\delta x)^{2}$ |
| CAO. Notation needs to be accurate Use of dy/dx throughout max 4 marks only, final AO |
| FT from their response in (a) into (b) |

\hline 16 \& | (a) ($y=4 \sin 3 x$ selected |
| :--- |
| (b)(i) -1 |
| (ii) $18\left({ }^{\circ}\right)$ and $90\left({ }^{\circ}\right)$ with no other angles given | \& B1

B1
B2

4 \& | CAO |
| :--- |
| B1 for either $18\left({ }^{\circ}\right)$ or $90\left({ }^{\circ}\right)$. Accept embedded answers |

\hline
\end{tabular}

Level 2 Certificate in Additional Mathematics MS/Summer 2012

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

