$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

METHODS IN MATHEMATICS
 (LINKED PAIR PILOT)

JANUARY 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2011 examination in GCSE METHODS IN MATHEMATICS (LINKED PAIR PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Methods in Mathematics January 2011 Unit 1 Foundation Tier	Mark	Comments
1. (a) 9608 fifteen million (b) 135 27 63 6 (c) $10,11,20,30$ (d) 850	B1 B1 B1 B1 B1 B1 B2 $\begin{gathered} \text { B1 } \\ 9 \\ \hline \end{gathered}$	Accept 15 million B1 for 2 or 3 correct answers with no incorrect factors of 24 , or B1 for 4 correct with 1 incorrect
$\text { 2. } \begin{aligned} \hline \mathrm{B} \\ \mathrm{D} \\ \mathrm{~A} \\ \mathrm{C} \\ \mathrm{E} \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ 5 \end{gathered}$	
3. (a) $\mathrm{A}(3,2)$ plotted B $(-3,-4)$ plotted (b) $(0,-1)$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \\ \hline \end{gathered}$	Reverse coordinates no marks FT for A and B in their diagram
4. (a) A at 0 (b) B at or near $1 / 3$ (c) $1 / 200$ (d) $1-x$	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	
5. (a) For 2 correct in a form which allows comparison. For all 3 correct in a form which allows comparison $3 / 4,70 / 100,0.6$ (b) total ticket cost (£)18.4(0) Each ticket $18.4(0) \div 4$ $=(£) 4.6(0)$ total from friends $=(£) 13.8(0)$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ 7 \end{gathered}$	CAO FT their 18.4(0) FT their correct evaluation of $3 \times$ their 4.6(0) or $18.40-4.60$
6. (a) 33 (b) 30 Subtract three (from previous term) (c) (i) 68 (ii) 7 (d) $(31-7) \times 4$ $=16$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	Accept subtract 3 (from previous term). B0 for -3 .

Methods in Mathematics January 2011 Unit 1 Foundation Tier	Mark	Comments
7. (a) $x=46\left({ }^{\circ}\right)$ (b) $\begin{aligned} & 360-110-153-54 \\ & =43 \\ & m=137\left({ }^{\circ}\right) \end{aligned}$ (c) 90 (rectangle) $+(180-30-90=60)$ $=150\left({ }^{\circ}\right)$ (d) sight of $60\left({ }^{\circ}\right)$ Attempt to use 180-72-60 $=48\left({ }^{\circ}\right)$	B1 M1 A1 B1 E2 S1 M1 A1 9	180 - 'their 43' E2 for full explanation, E1 for partial.
8. (a) $21 y$ $13 x+18$ (b) $a=11$ (c) $95 x$ (pence)	$\begin{gathered} \hline \text { B1 } \\ \text { B2 } \\ \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	B1 for $13 x$. B 1 for +18 . Penalise further work -1 if B2 awarded.
9. (a) (b) ${ }^{13 / 24}$ (c) Sight of $3 / 24$ $3 / 24 \times 480$ 60	$\begin{gathered} \text { B2 } \\ \text { B2 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 7 \end{gathered}$	B1 for correct row or column B1 for denominator 24 or B1 for numerator 13 in a fraction less than 1 . FT their table FT 'their $3 / 24$,
10. 2 more hexagons drawn with at least one that meets given hexagon. At least 4 hexagons tessellating correctly. Yes \& reason given, e.g. shapes fit together with no gaps	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ \\ 3 \end{gathered}$	
$\text { 11. } \begin{aligned} a & =55 \\ b & =55 \\ c & =85 \\ d & =85 \end{aligned}$	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	NO FT in this question
12. (a) The numbers 1 to 8 placed correctly (b) $2 / 8(=1 / 4)$ $1 / 8$	B2 B1 B1 4	B1 for 6 of the 8 placed correctly, hence up to 2 omitted or incorrectly positioned FT from their Venn diagram. Ignore incorrect cancelling FT from their Venn diagram. Ignore incorrect cancelling Penalise incorrect notation once only, -1

Methods in Mathematics January 2011 Unit 1 Foundation Tier	Mark	Comments
13. Strategy to start to find factors, e.g. at least 2 for one of the square numbers given Complete set of factors for a sq. number other than 1 , seen or implied	S1 B1	E.g. 1, 2 and 4 or 1,3 and 9 (or 1,5, 25) E.g. 1, 2, 4, 8, 16 (or 1, 2, 3, 4, 6, 9, 12, 18, 36)
Complete set of factors for a sq. number with more than 3 factors, seen or implied	B1	SC1 if neither B1 award due to forgetting 1 and itself as factors
Conclusion from working that the square numbers (given) have an odd number of factors	E1	Not FT, correct conclusion needed, i.e. odd number of factors
A complete set of factors for a square number >16	B1	
Explanation of why, e.g. "middle factor used twice" or "pairs of factors but also the square root of the number'	E1	
Must be relevant work for the problem given, otherwise QWC0	$\begin{gathered} Q \\ \mathrm{Q} \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using
However, for an incorrect strategy but well expressed, then maximum QWC1	$\begin{aligned} & C \\ & 2 \end{aligned}$	acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
Look for - relevance - spelling - clarity of text explanations, - the use of notation (watch for the use ' $=$ ' being appropriate)		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer		material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer		
	8	

Methods in Mathematics January 2011 Unit 1 Foundation Tier	Mark	Comments
14. (a) Method of finding a prime factor	M1	Need to see two correct prime factors before an error
$2,2,3,3,7$ and 7	A1	Ignore ones
(b) $6 \mathrm{n}+7$	B1	FT provided at least one index >1 B1 for $6 \mathrm{n}+\ldots$
	B2	B
	5	

METHODS UNIT 1 HIGHER TIER

Methods Unit 1 January 2011 Higher Tier Mark scheme		Post Conference
$\text { 1.(a)(i) } \begin{aligned} 9(5--3) & / 3 \\ & =72 / 3 \text { or } 3 \times 8 \\ & =24 \end{aligned}$ (ii) 9 (b) $\mathrm{q}=\mathrm{u}-5 \mathrm{t}$ (c) $7(p+3)$ (d) -3 f (e) $6 x+12$	$\begin{gathered} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 8 \\ \hline \end{gathered}$	Allow an error in signs, maybe implied by an answer of $18 / 3$ Correct substitution, with one correct step in evaluation CAO. (M1 M0 A0 is awarded for an answer of $18 / 3$ or 6)
$\text { 2. } \begin{aligned} \mathrm{a} & =55 \\ \mathrm{~b} & =55 \\ \mathrm{c} & =85 \\ \mathrm{~d} & =85 \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	NO FT in this question
3.(a) (i) The numbers 1 to 8 placed correctly (ii) $2 / 8(=1 / 4)$ 1/8 (b) $(15+20) /(50+50)$ $=35 / 100$	B2 B1 B1 M1 A1	B1 for 6 of the 8 placed correctly, hence up to 2 omitted or incorrectly positioned FT from their Venn diagram. Ignore incorrect cancelling FT from their Venn diagram. Ignore incorrect cancelling Penalise incorrect notation once only, -1 Ignore incorrect cancelling Allow SC1 for an answer of $35 / 100$ from $15 / 50+20 / 50$, i.e. correct answer from incorrect notation. $35 / 100$ without working is M1 A1, $35 / 100$ from $15 / 50$ and $20 / 50$ is M1 A1
E.G. "Improved by more throws"	$\begin{gathered} \text { E1 } \\ 7 \end{gathered}$	
$\text { 4.(a) } \begin{aligned} 1760 / 8 & \\ & =220 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
Ruth (£) 440 and Joanne (£)1100	A2	A1 for either correct. If answers reversed A1
(b) 0.25 and 0.3 entered as terminating decimals	B1	Must be written as decimals
$1 / 9=0.11(111 \ldots) \text { or } 0 . \dot{1}$	B1	
$5 / 6=0.83(333 . .) \text { or } 0.8 \dot{3}$	B1	
$0.11(111 \ldots)$ and $0.83(333 \ldots)$ entered as recurring decimals	$\begin{gathered} \text { B1 } \\ 8 \end{gathered}$	Accept as fraction notation

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 January 2011 Higher Tier Mark scheme \& \& Post Conference \\
\hline \begin{tabular}{l}
5. Strategy to start to find factors, e.g. at least 2 for one of the square numbers given \\
Complete set of factors for a sq. number other than 1 , seen or implied \\
Complete set of factors for a sq. number with more than 3 factors, seen or implied \\
Conclusion from working that the square numbers (given) have an odd number of factors \\
A complete set of factors for a square number \(>16\) \\
Explanation of why, e.g. "middle factor used twice" or "pairs of factors but also the square root of the number' \\
Must be relevant work for the problem given, otherwise QWC0 However, for an incorrect strategy but well expressed, then maximum QWC1 \\
Look for \\
- relevance \\
- spelling \\
- clarity of text explanations, \\
- the use of notation (watch for the use ' \(=\) ' being appropriate) \\
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer \\
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar in their final answer
\end{tabular} \& \begin{tabular}{c}
S1 \\
B1 \\
B1 \\
E1 \\
B1 \\
E1 \\
\\
\hline \\
Q \\
C \\
2 \\
\hline
\end{tabular} \& \begin{tabular}{l}
E.g. 1, 2 and 4 or 1,3 and 9 (or \(1,5,25\)) \\
E.g. 1, 2, 4, 8, 16 (or \(1,2,3,4,6,9,12,18,36\)) \\
SC1 if neither B1 award due to forgetting 1 and itself as factors \\
Not FT, correct conclusion needed, i.e. odd number of factors \\
QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar \\
OR \\
evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. \\
QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
\end{tabular} \\
\hline \begin{tabular}{l}
6. Initial strategy, e.g. an appropriate diagram or considering \(360^{\circ}\) or \(168^{\circ}\) \\
360/12
\[
=30 \quad \text { (or equivalent) }
\] \\
Explanation, \\
e.g. repeated 30 times, 30 sides, 30 angles, regular polygon Conclusion, "Yes" it will from suitable working
\end{tabular} \& S1

M1
A1
B1

B1

5 \& | OR M1 for angle at centre is $180-2 \times 168 / 2$ followed by $360 / 12$ |
| :--- |
| FT their findings. This must be an interpretation, not implied |
| FT Yes or No from logic of working |

\hline | 7. (a) Method of finding a prime factor $2,2,3,3,7$ and 7 $2^{2} \times 3^{2} \times 7^{2}$ |
| :--- |
| (b) $6 n+7$ |
| (c) $\begin{aligned} & \mathrm{n}^{2}+\ldots \\ & \mathrm{n}^{2}+1\end{aligned}$ | \& M1

A1
B1
B2
M1
A1

7 \& | Need to see two correct prime factors before an error Ignore ones |
| :--- |
| FT provided at least one index >1 |
| B1 for $6 n+\ldots$ |
| Second difference of 2 |

\hline | 8. (a) $0.3,0.4,0.4$ and 0.6 on the correct branches |
| :--- |
| (b) 0.7×0.6 $=0.42$ |
| (c) Walking to work, bus home |
| Statement, e.g. ' $0.3 \times 0.4(=0.12)$ which is the smallest (probability)' or 'only 0.12 ' | \& B2

M1
A1
B1
E1

6 \& | B1 for one correct entry |
| :--- |
| FT most unlikely from their tree. Accept sight of 0.3×0.4 or 0.12 |
| FT most unlikely probability <1 from their tree. |
| For E1 accept they are the smaller (or smallest) probabilities (in each case). 0.3×0.4 or 0.12 without a statement is E0 |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Methods Unit 1 January 2011 Higher Tier Mark scheme \& \& Post Conference \\
\hline \begin{tabular}{l}
9.(a) 5 \\
(b) \(9.3 \times 10^{-5}\) \\
(c) \(4 \times 10^{7}\) \\
(d) 2
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { B2 } \\
\text { B3 } \\
7
\end{gathered}
\] \& \begin{tabular}{l}
B1 for 40000000 or \(\ldots . \times 10^{7}\) \\
B2 for sight of \(4^{-2}=1 / 16\) and \(8^{1 / 3}=2\) OR B1 for either of these
\end{tabular} \\
\hline \begin{tabular}{l}
10. (a) Attempt substitution of one value of \(x\) between \(0 \& 4\) \\
Two correct points on the line given (or plotted) \\
Correct straight line drawn \\
(b) For rearrangement \(y=-6 x / 3+8 / 3\) or other strategy to find \(m\) Gradient of given line is -2 (or \(-6 / 3\)) \\
Any equation equivalent to \(\mathrm{y}=-2 \mathrm{x} \pm \mathrm{c}\) where \(\mathrm{c} \neq 8 / 3\) \\
(c) C \\
(d) Appropriate sketch, in the two required quadrants
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B2 } \\
9
\end{gathered}
\] \& \begin{tabular}{l}
CAO SC1 for a straight line with correct gradient of 5 \\
Do not award A1 if M1 awarded but rearrangement is incorrect FT from their gradient provided M1 awarded \\
B1 for sketch correct in one quadrant
\end{tabular} \\
\hline \begin{tabular}{l}
11. (a)
\[
\mathrm{k} \times 15=5 \times 24
\]
\[
\mathrm{k}=8(\mathrm{~cm})
\] \\
Intersecting chords \\
(b)
\[
\mathrm{m}=60^{\circ}
\] \\
Alternate segment theorem \\
(c) Angle at A is \(40^{\circ}\)
\[
\mathrm{n}=80^{\circ}
\] \\
Cyclic quadrilateral AND angle at the centre twice that at the circumference
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { E1 } \\
\text { B1 } \\
\text { E1 } \\
\text { B1 } \\
\text { B1 } \\
\text { E1 } \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
All E marks are dependent on M1 or B1 mark in each section \\
Accept "rectangle property of a circle" \\
Or similar description \\
FT \(2 \times\) angle A \\
Or full description of an alternative method
\end{tabular} \\
\hline \begin{tabular}{l}
12.(a) \(15 \mathrm{x}^{2}+21 \mathrm{x}-10 \mathrm{x}-14\)
\[
=15 x^{2}+11 x-14
\] \\
(b) \((11 d+5)(11 d-5)\) \\
(c) \((4 y+3)(5 y-2)\) \\
\(-3 / 4\) and \(2 / 5\) \\
(d) \((x+7)^{2}-2\) \\
(e) Numerator \(8(3 f-2)-5(f-4)\) \\
Denominator \((f-4)(3 f-2)\)
\[
\frac{19 f+4}{(f-4)(3 f-2)}
\] \\
(f) Attempt to use a common denominator \(3 \times 2 \times 3 x+22(x-3)+3 \times 11(4 x+5) \quad(/ 66)\) \\
\(\left.\frac{(18 x+22 x-66+132 x+165)}{66}\right) \quad\) Convincing \(\frac{172 x+99}{66}\)
\end{tabular} \& B1
B1
B2
B2
B1
B2
M1
M1
A2

M1
A1
A2

17 \& | FT from one error in the 4 terms |
| :--- |
| B1 for (11d ... 5)(11d ... 5) |
| B1 for $(4 y-3)(5 y+2)$ or split mid term and $1^{\text {st }}$ step factor |
| FT from a pair of brackets |
| B1 for $\mathrm{a}=7$ and B 1 for $\mathrm{b}=-2$ |
| FT 1 error to allow A1 or for incorrect expansion of the denominator. If A2, penalise further incorrect work -1 SC1 for sight of $19 f+4$ if no other marks awarded Or \times both sides by 66 |
| A1 for 1 slip or no conclusion to the identity |

\hline | 13.(a) 0.8×1 or equivalent, AND an attempt to consider the other 20% |
| :--- |
| 0.2×0.25 or equivalent |
| Showing the need to add $(0.8+0.05)$ |
| 0.85 or equivalent |
| (b)Probability from part (a) $\times 40$ |
| 34 | \& M1

M1
M1
A1
M1

A1

6 \& | Not for sight of 80% alone |
| :--- |
| Method considers $80 \%+25 \%$ of $1 / 4$ |
| FT from part (a), apart from 80% giving an answer of 32 , this is M0 A0 |
| FT from part (a), apart from 80% |

\hline
\end{tabular}

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

