GCSE MARKING SCHEME

MATHEMATICS - UNITISED

NOVEMBER 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2011 examination in GCSE MATHEMATICS - UNITISED. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Mathematics Unit 1 - Foundation Tier 1
Mathematics Unit 2 - Foundation Tier 4
Mathematics Unit 1 - Higher Tier 7
Mathematics Unit 2 - Higher Tier 10

UNIT 1 - FOUNDATION TIER

NOVEMBER 2011 UNIT 1 Foundation	Mark	FINAL MARK SCHEME (19/11/11) Comments (Page 1)
$\begin{array}{r} \text { 1. Sight of } 2 \cdot 5(\mathrm{~kg}) \text { OR } 2^{1 ⁄ 2}(\mathrm{~kg}) \\ 2 \cdot 5 \times(£) 1.3(0) \\ =(£) 3.25 \end{array}$	$\begin{gathered} \mathrm{B} 1 \\ \text { M1 } \\ \text { A1 } \\ 3 \\ \hline \end{gathered}$	F.T. 'their scale reading' $\times(£) 1.3(0)$
2. (a)Blue 12 Cream 18 Yellow 10 (b) Blue, Cream and Yellow along one axis. Uniform scale starting at 0 . Three bars at correct heights	B2	For all three correct. B1 for one (or two) correct. Allow unambiguous indication in either 'Tally' or 'Frequency' column (Frequency column takes precedence). Or indicated on the bars themselves. Accept B,C and Y. Ignore widths of bars. B0 for ambiguous placing of numbers between grid lines. B1 for two correct heights. F.T. their frequencies. If no scale assume one square to represent a frequency of 1 . Mark heights on uniform scale that does not start at 0 (e.g. starts at 1) accordingly.
3. (a) Moscow, Berlin, Cardiff, Athens, Dublin. (b) $7\left({ }^{\circ} \mathrm{C}\right)$ (c) $8\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	Accept unambiguous correct order e.g. $-7,-3,0,2,3$. Accept -7. B0 for -8
4. $\begin{array}{r}22: 05 \quad \text { OR } 10.05 \text { (p.m.) } \\ \\ \\ \\ \end{array}$	B1 B1 2	Accept any unambiguous indication that the correct time has been chosen. Accept 45 (min) or $3 / 4$ (hour) if 2235 or 10.35 p.m. given in first part.
5. $\begin{aligned} 5 \div 0 \cdot 34 & \text { or } 500 \div 34 \quad(=14 \cdot 7 \ldots .) \\ & =14 \text { (peaches) } \\ (\text { change }= & (£) 5-14 \times 0 \cdot 34 \\ & =(£) 0.24 \end{aligned}$	M1 A1 M1 A1 4	Accept any attempt to find how many 34s in 500. F.T. their number of peaches only if greater than 1 and less than 14. Accept 24(p). Allow $£ 0.24$ p but not 0.24 p.
$\begin{aligned} & \text { 6. } \begin{array}{r} \text { Time }=)(2+) 9 \times 30(\mathrm{~min}) \\ =(2+) 9 \times 1 / 2(\mathrm{hr}) \\ \\ =61 / 2(\mathrm{hrs}) \text { OR } 6 \mathrm{hrs} 30 \mathrm{~min} \\ (\text { Charge }=)(£) 25+61 / 2 \times(£) 30 \end{array} \\ & =(£) 220 \end{aligned}$	M1 M1 A1 M1 A1 5	Sight of 9×30 gains M1 BUT make sure that it is 'Time' that is being found. So, for example, $9 \times £ 30$ or $25+270$ will be M0 as 'Money' is implied. Sight of $4 \frac{1}{2}(\mathrm{hrs})$ or 4 hr 30 min . gains both M marks. May be implied in work that shows understanding of correct relationship between hours and minutes. Accept rounding up to nearest whole hour above. F.T. 'their time given in hours' OR 'their time rounded to the nearest whole hour above'. SC1 for (£)195 (call-out charge not included)

NOVEMBER 2011 UNIT 1 Foundation	Mark	FINAL MARK SCHEME (19/11/11) Comments (Page 2)
7. (a) $18+1 \cdot 2$ OR $18000+1200$ (Total weight $=) 19 \cdot 2(\mathrm{~kg})$ OR $19200(\mathrm{~g})$ $0 \cdot 8(\mathrm{~kg})$ (under) OR $800(\mathrm{~g})$ (under) Look for - spelling - clarity of text explanations and correct units shown - the use of notation (watch for the use of ' $=$ ', ' + ' being appropriate) QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer (b) $\begin{aligned} 50 \div 2 \cdot 2 \quad \text { OR } \quad 20(\mathrm{~kg}) & =20 \times 2 \cdot 2(\mathrm{lbs}) \\ =22(\cdot 727 \ldots) \text { or } 23 & =44(\mathrm{lbs}) \\ & \text { Luggage is over weight limit. } \end{aligned}$	M1 A1 A1 QWC2 M1 A1 A1 8	Must use the same units. FT their total weight. 'under' not needed for A1, but will be assessed within QWC. QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar. An unsupported answer is QWCO. In (b) they must show their method before any marks can be awarded Also allow $21 \times 2 \cdot 2$ or $22 \times 2 \cdot 2$ $=46 \cdot 2 \quad=48 \cdot 4$ F.T. their answer.
$8 . \quad 36 \cdot 8$	B2 2	B1 for 36•83(722.....)
9. (a) 40(\% are girls) (b) 0.44×25 or equivalent method $=11$ (girls) (c) (No) We do not know how many pupils in Class A.	$\begin{gathered} \text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 5 \\ \hline \end{gathered}$	B1 for 2/5 (are girls) SC1 for unambiguous correct conversion of $3 / 5$ or $4 / 5$ to a percentage (e.g. $3 / 5=60 \%$ but not 60% alone). The 'No' may be implied. A correct reason must be given.
$\begin{aligned} &\hline 10 \text { (a) (Volume }=) \quad 8.5 \times 6.6 \times 3.7 \\ &=207.57 \\ & \mathrm{~cm}^{3} \end{aligned}$ (b) $\begin{aligned} & \begin{array}{r} (85 \times 66 \times 37) \div(8 \cdot 5 \times 6 \cdot 6 \times 3 \cdot 7) \\ \text { OR } 10 \times 10 \times 10= \\ = \end{array} 1000 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { U1 } \\ \text { M1 } \\ \\ \text { A1 } \\ 5 \\ \hline \end{gathered}$	M1 implied by an answer between 207 and 208 inclusive Accept $207 \cdot 6$ and $207 \cdot 5$. Independent of previous marks. Also allow $(85 \times 66 \times 37) \div$ 'their $207 \cdot 57$ '. C.A.O.

NOVEMBER 2011 UNIT 1 Foundation	Mark	FINAL MARK SCHEME (19/11/11) Comments (Page 3)
11. Labelling litres and uniform scale on vertical axis Uniform scale on horizontal axis Plotting at least two correct points. Correct line drawn Any correct strategy, e.g 10 times value at 35 litres. A correct answer for their line.	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { P1 } \\ \text { L1 } \\ \text { M1 } \\ \text { A1 } \\ 6 \\ \hline \end{gathered}$	P0,L0 if no attempt at uniform scaling. \pm ' $1 / 2$ small square'. The origin may be one of the points. Correct line implies P1L1. M0 if inappropriate scale used. E.g. 350 litres on scale. F.T. their line. Allow M1,A1 for unsupported answers between 76 and 78 inclusive or if graph not used.
12. $\begin{aligned} & \hline \text { B } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	
13. Showing a strategy to find total 'running time' and total 'walking time' OR use of $\mathrm{km} / \mathrm{min}$. Runs for 50 min AND Walks for 10 min . Use of Distance $=$ Time \times Speed Runs $18 \times 50 / 60$ ($=15 \mathrm{~km}$) Walks $6 \times 10 / 60$ ($=1 \mathrm{~km}$) $($ Distance $=) 16(\mathrm{~km})$	$\begin{gathered} \hline \text { S1 } \\ \text { B1 } \\ \\ \text { M1 } \\ \text { m1 } \\ \text { m1 } \\ \text { A1 } \\ 6 \end{gathered}$	E.g. 'Running time' + 'walking time' $=60$ minutes. OR 'Ten repeats of 5 min running and 1 min walking' is enough for S1B1 Allow this M1 even if time in minutes and speed per hr. F.T. their 'running time' if less than 60 minutes. F.T. their 'walking time' if less than 60 minutes and not equal to 'running time'.
14. $\frac{23970-23500}{23500}$ $\begin{array}{r} \times 100 \\ \quad=2(\%) \end{array}$	$\begin{gathered} \hline \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ 3 \end{gathered}$	Look out for those who incorrectly use 23970 as a denominator (giving an answer of 1.96....\%) which is then approximated to 2%. MOm0AO.
15. Least Value $19 \cdot 5$ Greatest Value $20 \cdot 5$ 745	B4 4	B1 for each correct entry. Accept $20 \cdot 49$ recurring but not $20 \cdot 49$. Accept $754 \cdot 9$ recurring but not $754 \cdot 9$.

UNIT 2 - FOUNDATION TIER

2011 Autumn UNIT 2 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments \quad (21/11/2011) \quad (Page 1)
1. (a) (i) Eleven thousand three hundred and sixty five (pounds) (ii) (£) 110680(.00p) (b) (i) 30 (ii) 25 (iii) 29 OR 31	$\begin{gathered} \text { B1 } \\ 5 \end{gathered}$	Accept 5×5 OR 5^{2} For either or both, but B0 if any incorrect number given
2. (a) 700 OR 7 hundred (b) 1, 3, 9, 27 (c) (d) $£ 5-5 \times \underline{90}(\mathrm{p})$ $=50(\mathbf{p})$ (e) 3×70 $=210$	B1 B2 B1 B1 B1 M1 A1 M1 A1 10	Do not accept hundred(s) B1 for any 2 or 3 factors and no incorrect numbers OR for all 4 factors and 1 incorrect number. 60/100 gets B0 Intention to subtract as many 90p as possible allowing for arithmetical errors. Allow $£ .50$ p for the A 1 , but .50 p or $£ 50$ get A 0 . The 3 must not be changed. The 69.8 must be changed to a whole number. Only $3 \times 70=210$ gets M1, A1. All others, for example, 3×69 ($=207$) get M1, A0.
3. (a) (b) unlikely	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	A should be at the half way mark B should be to the right of the ' d ' and up to 1 exclusive C should be at 0 .
4. (a) 2 rectangles of 6 by 4.5 2 rectangles of 3 by 4.5 1 rectangle of 6 by 3 Makes a correct net (b) 4 (c)	B1 B1 B1 B1 B1 B2 7	Use overlay ($\pm 2 \mathrm{~mm}$) B1 for all 4 correct squares and one extra OR 2/3 correct squares and no incorrect squares
5. A $(-4,4)$ B $(0,-2)$ C $(-1,-3)$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ 3 \end{gathered}$	Allow the marks even if only the letters as long as it is clear that the correct point is being indicated. Reverse coordinates gets B0 on every occasion.

\begin{tabular}{|c|c|c|}
\hline 2011 Autumn UNIT 2 (Non calculator) Foundation Tier \& Marks \& FINAL POST CONFERENCE
MARK SCHEME
Comments \(\quad(21 / 11 / 2011) \quad\) (Page 3) \\
\hline 10.(a) Strategy for the idea of time difference, e.g. 16 hours different, 2 days \(+81 / 2\) (from NY time on clock) \& S1 \& \begin{tabular}{l}
For the idea of time difference, but there may be an error in the actual time difference \\
Sight of 16.
\end{tabular} \\
\hline Use of timeline or calculation, e.g. \(1500+16\) hours, or \(3 \mathrm{pm}+9\) hours to midnight \(+\ldots\), or \(0630+48\) hrs \(+81 / 2 \mathrm{hrs}\) \& M1 \& Sight of 31 or \(561 / 2\). Or M1 for an alternative complete method that could lead to a correct answer \\
\hline Thursday AND \(07(:) 00\) or 7 am \& A1 \& Needs day and time, time (0700 or 7am) alone gets S1 M1 A0. Do not accept 700 or 7 as a time, but do not penalise again in QWC An answer of '7(pm) Thurs' when S1 awarded gets M1 A0, but when S1 not awarded gets M0 A0. \\
\hline \& \& Penalise-1 for going from London to Sydney (leading to 2am Thursday) \\
\hline \begin{tabular}{l}
QWC: Candidates would be expected to \\
- clearly show how they arrived at their solution \\
- have few errors in spelling, punctuation and grammar \\
- use capital letters appropriately
\end{tabular} \& QWC 2 \& QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
\hline \begin{tabular}{l}
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar
\end{tabular} \& \& \begin{tabular}{l}
QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar \\
OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
\end{tabular} \\
\hline \begin{tabular}{l}
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps
\end{tabular} \& \& QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. \\
\hline - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer \& \& \begin{tabular}{l}
A final statement only, e.g. ‘Thursday 0700 ’ gets QWC0 \\
M1 for intention to multiply by 60 , or
\end{tabular} \\
\hline (b) \(600 \times 60\) \& M2 \& M1 for intention to divide by 1000 (may be shown by 0.6 km) CAO \\
\hline (b) 36 (km/h) \& A1
8 \& \\
\hline 11. (a) Method that produces at least 2 correct prime \& M1 \& B \\
\hline factors \& A1 \& \\
\hline Sight of correct factors (2, 2, 2, 2, 7)
\[
2^{4} \times 7
\] \& B1 \& FT their factors (with at least 1 index \(>1\) used). Do not ignore 1s. \\
\hline (b) E.g. ' \(2^{5}\) not even power' or 'no whole number times itself gives 32 ', ' 32 is in between \(5^{2}\) and \(6^{2,}\) \& E1 \& \begin{tabular}{l}
Accept no number times itself gives 32 with \(5 \times 5\) and \(6 \times 6\) given. \\
Accept \({ }^{`} 5 \times 5=25\) and \(6 \times 6=36\) '. Do not accept ' 25 , 36 ’
\end{tabular} \\
\hline H6cd \& 4 \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NOVEMBER 2011 UNIT 1 Higher \& Mark \& FINAL MARK SCHEME (19/11/11) Comments (Page 1) \\
\hline 1.
\[
\left.\begin{array}{rl}
(£) \\
\& 24 \times 1 \cdot 2
\end{array}\right) \text { OR }(£) 24+24 \times 0 \cdot 2
\]
\[
\begin{gathered}
(£) 28.8(0) \times 3 / 4 \text { OR }(£) 28.8(0)-28.8(0) \times 1 / 4 \\
=(£) 21.6(0)
\end{gathered}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
4
\end{tabular} \& \begin{tabular}{l}
F.T. their '24 + VAT' (Must be greater than 24). \\
OR
\[
\begin{array}{cc}
(£) 24(.00) \times 3 / 4 \text { OR }(£) 24 .(00)-24 .(00) \times 1 / 4 \& \text { M1 } \\
=(£) 18 .(00) \& \text { A1 } \\
(£) 18 \times 1 \cdot 2 \text { OR }(£) 18+18 \times 0 \cdot 2 \& \text { M1 } \\
=(£) 21.6(0) \& \text { F.T. 'their }(£) 18 \prime
\end{array}
\]
\end{tabular} \\
\hline 2. Correctly drawn and labelled. \& B4 \& \begin{tabular}{l}
'Correct' angles taken as given below (inclusive). Conservative \(167^{\circ}\) to \(172^{\circ}\), Labour \(141^{\circ}\) to \(145^{\circ}\), Liberal Democrats \(29^{\circ}\) to \(34^{\circ}\) and Others \(14^{\circ}\) to \(18^{\circ}\). (As total not a multiple or factor of 360 allow greater tolerance than the usual \(\pm 2^{\circ}\).) \\
B3 for 4 correct angles drawn but not labelled correctly. \\
B2 for 2 or 3 correct angles drawn and labelled. \\
B1 for 1 correct angle drawn and labelled. \\
If no B marks gained. \\
M1 for sight of using a correct method to find an angle or percentage.
\end{tabular} \\
\hline \begin{tabular}{l}
3. Three different valid comments. \\
e.g. 'Not representative of whole school' \\
'Small sample’ \\
'Might not get a truthful answer' \\
'Does not specify over what period of time', \\
'Might get a poor response' \\
'Use boxes to show times'.
\end{tabular} \& B3 \& \begin{tabular}{l}
B1 for each different valid comment. \\
Accept equivalent statements e.g. \\
‘biased’ (by age, gender or ability). \\
'not confidential' (a criticism of question (i)) \\
'is it per night or per week?' (a criticism of question (ii)) \\
'pupils will forget (to hand them in)' \\
Do not give more than one mark for similar criticism(s).
\end{tabular} \\
\hline \begin{tabular}{l}
4. (£) \(800 \times 2 \cdot 08\)
\[
\text { = } 1664 \text { (NZ dollars) }
\] \\
270 (NZ dollars on return)
\[
\begin{aligned}
270 \div 2 \cdot \& 25 \\
\& =(£) 120
\end{aligned}
\] \\
Look for \\
- spelling \\
- clarity of text explanations, \\
- the use of notation (watch for the use of units being appropriate) \\
QWC2: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
AND \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer \\
QWC1: Candidates will be expected to \\
- present work clearly, with words explaining process or steps \\
OR \\
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer
\end{tabular} \& \& \begin{tabular}{l}
F.T. 'their 1664' - 1391 AND truncated. \\
F.T. 'their return dollars' even if not multiple of 10. \\
QWC2. Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC1. Presents relevant material in a coherent and logical manner, but with some errors in use of mathematical form, spelling, punctuation or grammar. OR \\
Evident weakness in organisation of material but using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. \\
QWC0. Evident weakness in organisation of material and errors in use of mathematical form, spelling, punctuation and grammar.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NOVEMBER 2011 UNIT 1 Higher \& Mark \& \begin{tabular}{l}
FINAL MARK SCHEME (19/11/11) \\
Comments (Page 2)
\end{tabular} \\
\hline 5.
\[
\begin{aligned}
\& \mathrm{B} \\
\& \mathrm{C} \\
\& \mathrm{~A}
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\text { B1 } \\
3
\end{gathered}
\] \& \\
\hline \begin{tabular}{l}
6. Showing a strategy to find total 'running time' and total 'walking time' OR use of \(\mathrm{km} / \mathrm{min}\). \\
Runs for 50 min AND Walks for 10 min . \\
Use of Distance \(=\) Time \(\times\) Speed \\
Runs \(18 \times 50 / 60\) (\(=15 \mathrm{~km}\)) \\
Walks \(6 \times 10 / 60\) (\(=1 \mathrm{~km}\)) \\
\((\) Distance \(=\)) \(16(\mathrm{~km})\)
\end{tabular} \& \[
\begin{gathered}
\text { S1 } \\
\text { B1 } \\
\\
\text { M1 } \\
\text { m1 } \\
\mathrm{m} 1 \\
\\
\text { A1 } \\
6
\end{gathered}
\] \& \begin{tabular}{l}
E.g. 'Running time' + 'walking time' \(=60\) minutes. \\
OR 'Ten repeats of 5 min running and 1min walking' is enough for S1B1 \\
Allow this M1 even if time in minutes and speed per hr. F.T. their 'running time' if less than 60 minutes. \\
F.T. their 'walking time' if less than 60 minutes and not equal to 'running time'.
\end{tabular} \\
\hline 7. \(\frac{23970-23500}{23500}\)
\[
\begin{aligned}
\times 100 \& \\
\& =2(\%)
\end{aligned}
\] \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { m1 } \\
\text { A1 } \\
3 \\
\hline
\end{gathered}
\] \& Look out for those who incorrectly use 23970 as a denominator (giving an answer of \(1.96 . . . \%\)) which is then approximated to \(2 \%\). MOmOAO. \\
\hline 8.
\[
\begin{array}{ll}
\pi \times 50 \& \\
\& \\
\& =257(\cdot 07 \ldots) \\
\text { (nearest } 10 \text { metres }=\text {) }
\end{array}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
B1 \\
4
\end{tabular} \& \begin{tabular}{l}
(Note for ' +100 ' and not '100'.) \\
F.T. for A1 and B1 only if at least one M1gained and lengths are dimensionally correct and \(\pi\) used. F.T. for equivalent work to nearest 10 metres. SC2 for 130 . SC1 for \(128 \cdot 5(. .0)\) [Using 50 m as diameter]
\end{tabular} \\
\hline \begin{tabular}{l}
9. (a) \(15 \times \frac{1200}{800}\)
\[
\times \frac{6}{5}
\]
\[
\text { = } 27 \text { (people) }
\] \\
(b) \(800 \div(15 \times 6)\) OR \(1200 \div(27 \times 5)\) (which is less than 10) so ' NO '. A correct conclusion must be unambiguously stated or implied.
\end{tabular} \& M1
M1
A1

B1

4 \& | Or equivalent e.g. $\times 1 \cdot 5$ or $\div 0 \cdot 66(6 \ldots$...). |
| :--- |
| Or equivalent e.g. $\times 1.2$ or $\div 0 \cdot 83(3 \ldots)$. |
| C.A.O. |
| Alternate presentation. |
| FT their 27 |
| Also $15 \times 6 \times 10$ (required) (which is more than 800). |
| OR $27 \times 5 \times 10$ (required) (which is more than 1200). |

\hline | 10. (a) $(60 / 4) \times 60 \times 60$ $\begin{aligned} \div 1000 & \\ & =54(\mathrm{~km} / \mathrm{h}) \end{aligned}$ |
| :--- |
| (b) Recognising that time could be $4 \cdot 5$ (seconds) $\frac{60 \times 3600}{4 \cdot 5 \times 1000} \quad=48(\mathrm{~km} / \mathrm{h})$ | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { B1 } \\
\text { M1 } \\
\\
\text { A1 } \\
6
\end{gathered}
$$

\] \& | For converting 'per second' to 'per hour'. For converting metres to kilometres. C.A.O. |
| :--- |
| F.T. their 'time' only if greater than 4(seconds). |
| A0 if greater than $50(\mathrm{~km} / \mathrm{h})$ on F.T. |

\hline
\end{tabular}

UNIT 2 - HIGHER FOUNDATION

6.(a) 5 (b) 4 (c) Method that produces at least 2 correct prime factors Sight of correct factors (2, 2, 2, 2, 7) $2^{4} \times 7$ (d) E.g. ' $2{ }^{5}$ not even power' or 'no whole number times itself gives 32^{\prime}, ' 32 is in between 5^{2} and $6^{2,}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { E1 } \\ 6 \end{gathered}$	Accept embedded answer ${ }_{3} \sqrt{ } 5 \times 5 \times 5$. Mark final answer. CAO. Do not accept 4/1 Before $2^{\text {nd }}$ error Ignore 1s seen FT their factors (with at least 1 index >1 used). Do not ignore 1s. Accept no number times itself gives 32 with 5×5 and 6×6 given. Accept ' $5 \times 5=25$ and $6 \times 6=36$ '. Do not accept ' 25 , 36 '
7.(a) $4 n+7$ (b) 63,62 (c) Strategy, e.g. $1 \times 3,2 \times 4,3 \times 5$, OR (3, 8,) 15,24 with an attempt to look at differences, OR n^{2} $n \times(n \ldots$.$) \quad OR second difference of 2$ OR $n^{2} \pm \ldots$ $n \times(n+2)$ OR $n^{2}+2 n$	$\begin{gathered} \text { B2 } \\ \text { B1 } \\ \text { S1 } \\ \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	B1 for $4 n \pm \ldots$, B0 for $4 n$ alone, B0 for $n+4$. Allow B2 for $n=4 n+7$ Looking at the number of squares with differences If M1 awarded then also award S1
8.Three reasonable sketches	B3 3	B1 for each sketch. N.B. The 2nd needs to show two disjoint curves, $1^{\text {st }} \& 3^{\text {rd }}$ intention to pass through O.
9.Any 3 of the lines $y=5, x+y=4, x=3, x+y=0$ drawn Correct region indicated	$\begin{gathered} \hline \text { B3 } \\ \text { B1 } \\ 4 \end{gathered}$	Award B2 for any 2 lines OR B1 for any 1 line drawn CAO
10. Method to find the first variable Correct first variable Method to find the second variable Correct second variable	M1 A1 M1 A1 4	Allow 1 slip, but not in the equal coefficient $x=8$ or $y=-3$ FT from their first variable
11. Transformation horizontally to the right 9 indicated correctly on the x -axis with the correct transformation	B1 B1 2	SC1 for left shift with 3 indicated on the x -axis
12. (a) CQ or QC Tangents equal in length (b) 110° Angle centre twice angle circumference AND cyclic quadrilateral	B1 E1 B1 E1 4	E marks depend on B marks being awarded Or equivalent description in words OR angles at a point (or centre) AND angle centre twice angle circumference
13.(a) Attempt to subtract $100 x=76.464 \ldots$ and $x=0.76464 \ldots$ 757/990 (b) $25-15 \sqrt{ } 2-15 \sqrt{ } 2+18$ $\begin{gathered} =43-30 \sqrt{ } 2 \\ \text { Irrational } \end{gathered}$	M1 A1 M1 A1 B1 5	Or equivalent for $1000 x-10 x$ Final answer of 75.7/99 M1 only With at least 3 of the terms correct OR $25 \pm a \sqrt{ } 2+18$ with $a \neq 0$ CAO FT provided at least M1 awarded
$\begin{aligned} & \text { 14. (a) } 50 / 100 \times 50 / 99(=2500 / 9900) \\ & 50 / 100 \times 50 / 99+50 / 100 \times 50 / 99 \\ & 5000 / 9900(=50 / 99) \\ & \\ & \text { (b) } 1-\mathrm{P}(\mathrm{odd} \text {, odd }) \\ & =1-50 / 100 \times 49 / 99 \\ & =7450 / 9900 \quad(=149 / 198) \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & 6 \\ & \hline \end{aligned}$	OR $2 \times 50 / 100 \times 50 / 99$ Ignore incorrect cancelling FT from (a) if $P(O E)$ and $P(E O)$ and $P(O O)$ used OR P(OE) + P(EO) + P(EE) OR FT (a) + P(EE) $50 / 100 \times 50 / 99+50 / 100 \times 50 / 99+50 / 100 \times 49 / 99$ OR (a) $+50 / 100 \times 49 / 99$ CAO. Ignore incorrect cancelling

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

