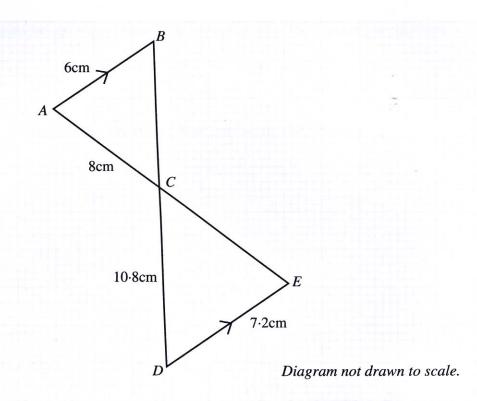

9. (a) Explain clearly why the following triangles are similar.

- 12. In the diagram, PQ is parallel to ST, and the triangles PQR and TSR are similar. The lengths QR = 9 cm, PR = 12 cm, RT = 14.4 cm and ST = 13.2 cm.

Diagram not drawn to scale.

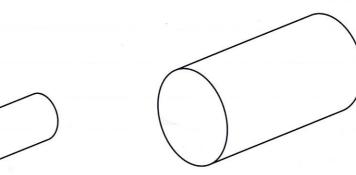
Showing all your working, find the length of RS, (a)[2] (b) PQ. [2]



	9 cm 6 cm	
	3 cm	
	$D T \cdot 2 \text{ cm} E$	
	Diagram not drawn to scale.	
In the diagram, BC	<i>C</i> is parallel to <i>DE</i> , and the triangles <i>ABC</i> and <i>ADE</i> are similar.	
$AB = 9 \mathrm{cm}, AC = 6$	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	
AB = 9 cm, AC = 6 Showing all your v	<i>C</i> is parallel to <i>DE</i> , and the triangles <i>ABC</i> and <i>ADE</i> are similar. Scm, <i>BD</i> = 3 cm and <i>DE</i> = $7 \cdot 2$ cm. working, find the length of	
$AB = 9 \mathrm{cm}, AC = 6$	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	00
AB = 9 cm, AC = 6 Showing all your v	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	00
AB = 9 cm, AC = 6 Showing all your v	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	00
AB = 9 cm, AC = 6 Showing all your v	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	00
AB = 9 cm, AC = 6 Showing all your v	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	00
AB = 9 cm, AC = 6 Showing all your v (a) BC ,	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	
AB = 9 cm, AC = 6 Showing all your v	$b \text{ cm}, BD = 3 \text{ cm} \text{ and } DE = 7 \cdot 2 \text{ cm}.$	

10

I



In the diagram, AB is parallel to DE, and the triangles ABC and EDC are similar. AB = 6 cm, AC = 8 cm, DE = 7.2 cm and CD = 10.8 cm.

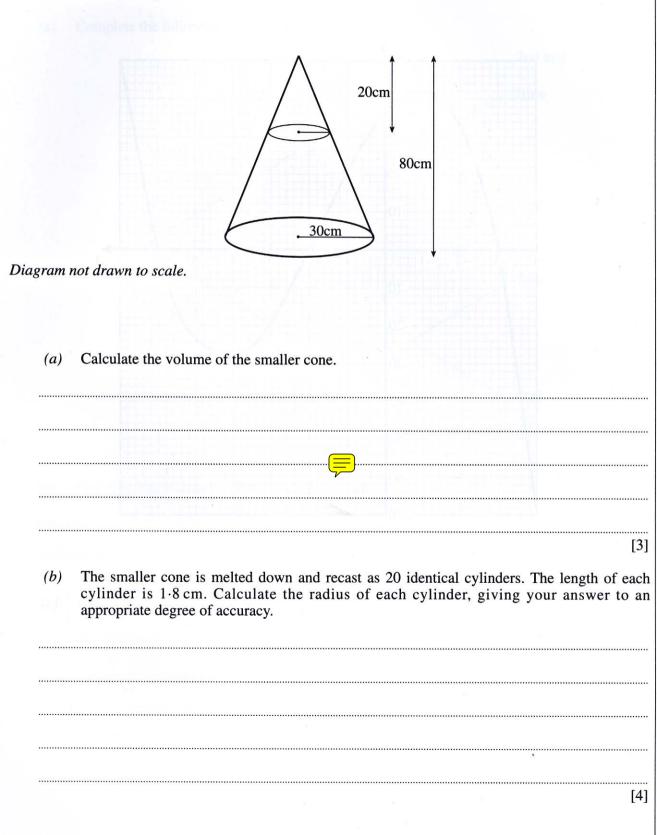
Showing all your working, find the length of

(a)	CE,			
			 	[2]
(b)	BC.			[2]
		`		
			 	 [2]

14. The diagram shows two **similar** cylinders. The radius of the smaller cylinder is half the radius of the larger cylinder. The volume of the smaller cylinder is 200 cm³.

Diagrams not drawn to scale.

[2]


Find the volume of the larger cylinder.

18. The diagram shows two squared-based pyramids that are similar.

Diagrams not drawn to scale.	
The smaller square-based pyramid has a base area of 30 cm ² and a perpendicular height of 6	6·4 cm.
(a) Find the volume of the smaller square based pyramid.	
312/412/20 8	
	[2]
(b) The area of the base of the similar large square-based pyramid is 120 cm^2 .	
(i) Find the perpendicular height of the larger square-based pyramid.	
	[2

(ii) Find the volume of the larger square-based pyramid.

15. A solid metal cone has a height of 80 cm and radius of 30 cm. A smaller cone of height 20 cm is obtained by cutting off the top of the original cone.

