DO NOT WRITE ON THIS PAPER	TIME 2 hours	Paper 2 of 5 from ZigZag Education
Sample GCSE Examination Paper	Standard Equipment: lined or squared paper, pen, pencil, ruler.	
Higher tier non-calculator paper	Additional Equipment: graph paper, pair of compasses, plain paper.	

1.	a)	Estimate:	111×0.0018

b)

2.

3.

12 Write 51^2 as the product of primes

c) Calculate
$$4 \times 1.2 \times 10^4$$
 and write your answer in standard form.

- Calculate $\frac{1.2 \times 10^4}{3}$ and write your answer in standard form. d)
- 30 students swim the length of the pool and their time is recorded. Jim puts the results in the following table. Estimate the mean time for the class.

Time in seconds	Frequency	
$10 < t \le 20$	3	
$20 < t \le 25$	10	
$25 < t \le 35$	17	4 marks

Write down formulae to represent the nth term of sequences i) and ii). a)

- i) 5, 9, 13, 17,...
- ii) 1/2, 2/3, 3/4, 4/5,...
- Jim thinks of a number, times it by 3 and then adds 4. b) If the result is *x* what did he start with?
- Jo thinks of a number. He tells John that his number is not a whole number. c) He also tells John that if he adds 50 to his starting number then this is the same as multiplying his starting number by 5.
 - Formulate an equation in x which must be true; where x is Jo's starting number. i)
 - ii) Solve the equation.
- 4. In the following diagram find x and the perimeter and the area of the shape.

Bag A

1/5

4/5

Solve the equation 10 - x = 2x - 10 and write your answer as a mixed number. a)

- Simply the expression: $\frac{x^2 9}{x 3}$ b)
- 6. There are two bags.

Bag A contains 1 yellow ball and 4 red balls. Bag B contains 1 yellow ball and 9 red balls. A ball is selected from bag A and then from B.

a) Copy and complete the tree diagram

Calculate the probability that both balls are yellow. b)

7. John buys some skis in a sale. His skis were reduced by 10%. He pays £189. How much would he have paid if the skis had not been in the sale? a) Joshua also buys some skies whose price before the sale is £212.12.

p1

b) Calculate the cost of Joshua's skis after the sale of 10% to the nearest penny.

4 marks

4 marks

6 marks

9 marks

R

Bag B

p2

13. Calculate:

14.

- $400^{-1/2} \times 9^{1/2}$ a)
- $(2^3)^{1/3}$ b)
- $o^{-1/2}$ c)

30 students swim the school pool and their time is recorded. Jim puts the results in the following table:

Draw a histogram to represent Jim's data. a) b) Suggest an improvement to Jim's grouping of the data.

Time in seconds	Frequency
$10 < t \le 20$	3
$20 < t \le 25$	10
$25 < t \le 35$	17

6 marks

4 marks

 $x^2 - y^2 = 1$ x + y = 2Solve the simultaneous equations 15.

5 marks

- Solve the equation $\frac{2x-3}{4x} + \frac{x-1}{2x+1} = -2$ and show that one solution can be written in the form $\sqrt{\frac{1}{a}}$ with a 16. an integer and find the other solution in similar form. 6 marks
- 17. The length of a pendulum *l* is directly proportional to the square of the period *T* of the pendulum. A pendulum has a period of 0.5 seconds, and is 1 metre long.
 - What length of pendulum has a period of 2 seconds? a)
 - b) What is the period for a pendulum of length 16 m?
 - c) A pendulum *P* is constructed which has a period 4 times bigger than another pendulum *Q*. What is be the ratio of their lengths? 8 marks

p3

- В b) А ŏ
- 19. A solid cone has a height of 8cm and a slanted height of 10cm as shown. Calculate the total surface area of the cone, leaving your answer in terms of π . 6 marks

 $ACB = 90^{\circ}$.

