1. a) Solve the inequality $3 x+2 \leq 5$

Solve the following equations:
b) $x^{2}=9$
c) $\frac{x}{2}+\frac{x}{3}=2$
d) $\frac{x+1}{2}+\frac{x}{3}=1$
7 marks
2. a) Write down the next 2 numbers in the sequences
i) $\quad 1,5,9,13, \ldots$
ii) $\quad 2,5,10,17,26, \ldots$
b) Determine a formula for the $\mathrm{n}^{\text {th }}$ term of each of the above sequences?

Consider the following pattern:

c) How many dark squares will there be when there are 100 white squares?
d) How many dark squares will there be when there are \mathbf{n} white squares?
3. X and Y are lengths.
$\mathrm{J}=\mathrm{X}^{2}+\mathrm{Y}^{2}$
$\mathrm{K}=2 \mathrm{X}+\mathrm{Y}$
a) State whether J represents
i) a length ii) an area iii) a volume iv) none of the previous
b) State whether K represents
i) a length
ii) an area
iii) a volume
iv) none of the previous
4. a) Write 120 as the product of primes.
b) Write 1.234×10^{-5} as an ordinary number.
c) Estimate: $\frac{13.8 \times 0.022}{133}$

4 marks
5. a) Construct a triangle ABC such that $\mathrm{AB}=10 \mathrm{~cm} \mathrm{BC}=9 \mathrm{~cm}$ and $\mathrm{AC}=8 \mathrm{~cm}$. 4 marks
b) Shade all the points inside the triangle that are within 3 cm of AB and are nearer to AB than BC .
6. Bag A, and bag B both have green and yellow balls in.

The ratio of green to yellow balls in bag A is $1: 3$.
The ratio of green to yellow balls in bag B is $1: 4$.
The number of balls in each bag is the same.
a) Calculate the smallest number of balls that can be in bag A .

A ball is selected at random from each bag.
b) Copy and complete the tree diagram.
c) Calculate the probability that both balls are of the same colour.

6 marks

$$
2 \text { marks }
$$

ar

7. I have enough paint for $100 \mathrm{~m}^{2}$.

I am painting the front of these panels.
How many complete panels do I have enough paint for?

2 marks
8. The share price of a company was recorded every quarter for two years.
The results are shown in the table below.
a) Find a four point moving average for the data.
b) Comment on the trend of the moving average.

	1998	1999
$1^{\text {st }}$ quarter	$£ 1.80$	$£ 2.00$
$2^{\text {nd }}$ quarter	$£ 2.00$	$£ 2.20$
$3^{\text {rd }}$ quarter	$£ 2.10$	$£ 2.30$
$4^{\text {th }}$ quarter	$£ 2.10$	$£ 2.30$

9. a) Calculate the area shaded.
b) Calculate the volume of the smaller prism.

The two prisms are similar.

c) Calculate the missing length \boldsymbol{x}.

The surface area of the smaller prism is given $b y: a+b \sqrt{ }$ where a, b and c are integers
d) Find a, b and c .

7 marks
10. Here are two squares.

Not drawn
accurately

The perimeter of the bigger square is 4 cm more than the smaller one.
a) Work out an expression in terms of \boldsymbol{x} for the difference in the areas of the 2 squares, and simplify your answer.

The difference between the area of the small square above and an even smaller square is given by the expression: $6 x-9$.
b) Find an expression for the perimeter of the smallest square in terms of \boldsymbol{x}. 8 marks
11. Evaluate:
a) $(1-4)^{-2}$
b) $8^{4 / 3}$
c) $100^{-1 / 2} \quad 4$ marks
12. Write $0 . \dot{9} \dot{3}$ as a fraction in simplified form $\frac{a}{b}$, with a and b integers.

3 marks
13. A quadrilateral OABC is such that $\overrightarrow{\mathrm{OA}}=\mathbf{a}, \overrightarrow{\mathrm{OB}}=\mathbf{b}$, and $\overrightarrow{\mathrm{OC}}=\mathbf{c}$.
a) Write $\overrightarrow{\mathrm{BC}}$ in terms of \mathbf{a} and/or \mathbf{b} and/or \mathbf{c}.

The midpoint of OA is X . The midpoint of BC is Y .
b) Write $\overrightarrow{X Y}$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}.

3 marks
14. I roll 3 fair dice.
a) What is the probability that all of the dice land on a 5 or 6 ?
b) What is the probability none of the dice lands on a 5 or 6 ?

3 marks
15. a) Write the expression, $x^{2}+4 x-5$ in the form $(x+\mathrm{b})^{2}-\mathrm{c}$, where b and c are integers.
b) Use the method of completing the square to solve the equation, $x^{2}+4 x-5=0$.

Leave your answer in surd form. To obtain any marks for b) you must show your working.
c) Describe the transformation that maps the curve $\mathrm{y}=x^{2}+4 x-5$ to the curve $\mathrm{y}=x^{2}+4 x$.
d) Describe the transformation that maps the curve $\mathrm{y}=x^{2}+4 x-5$ to the curve $\mathrm{y}=2 x^{2}+8 x-10$.
16. The following heights were recorded after one week of an experiment concerning plant growth.

Height in cm	Frequency
$10<\mathrm{h} \leq 30$	10
$30<\mathrm{h} \leq 50$	20
$50<\mathrm{h} \leq 60$	10
$60<\mathrm{h} \leq 80$	10
$80<\mathrm{h} \leq 100$	50

The mean height after this first week of the 100 plants was 65.1 cm . A week later the heights of all the plants are re-measured. A table to show the increase in height of each plant is summarised by the table.

Increase in Height in cm	Frequency
$0<\mathrm{h} \leq 2$	10
$2<\mathrm{h} \leq 4$	20
$4<\mathrm{h} \leq 6$	10
$6<\mathrm{h} \leq 8$	10
$8<\mathrm{h} \leq 10$	50

Estimate the mean height of the 100 plants after the second week.
3 marks
17. The alternate segment theorem states 'the angle between a tangent and its chord is equal to the angle in the alternate segment'.

diagram 1

In diagram 2 angle $\angle \mathrm{CDE}=25^{\circ}, \angle \mathrm{ABC}=103^{\circ}, \angle \mathrm{ACB}=20^{\circ}$.
b) i) Calculate angles x and y.
ii) Calculate the obtuse angle AOC,
where O is the centre of the circle.
a) i) By this theorem state two angles in diagram 1 that are equal.
ii) With reference to diagram 1 prove the alternate segment theorem.

diagram 2
18. The force of attraction, $f \mathrm{~N}$, between a steel mass and a magnet is inversely proportional to the cube of the distance, $d \mathrm{~m}$ between them. When the steel mass is 2 m away from the magnet, it experiences an attractive force of 4 N .
a) What will be the attractive force when the steel mass is 4 m away from the magnet?

7 marks
b) What distance of separation is required for an attractive force of 16 N ? Leave your answer in surd form.
19. The equation of a curve is $y=f(x)$ where $f(x)=x^{2}-14 x+16$.
a) Complete the square for $f(x)$.

5 marks
b) Hence or otherwise state the transformation that maps the curve $y=x^{2}-14 x+16$ to the curve $y=x^{2}$.
20. Make L the subject of the formula $V=2 \pi \sqrt{3 L}$.

